Skip to main content

Advertisement

Log in

Closed reduction and posterior percutaneous internal fixation for simple displaced talar neck fracture: a retrospective comparative study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Open reduction and internal fixation (ORIF) is the most commonly used surgical technique for talar neck fracture, but there are high risks for complications and poor functional outcomes. In this study, we reported the closed reduction and percutaneous internal fixation (CRPIF) technique of the bilateral approach of the Achilles tendon for simple displaced talar neck fracture, in comparison with ORIF.

Methods

Data of 15 patients in the CRPIF group and 22 in the ORIF group were included. The American Orthopaedic Foot and Ankle Society (AOFAS) score, Visual Analog Scale (VAS) score, 12-item Short-Form Survey (SF-12) score, range of motion (ROM), complications, and radiographic results were recorded and compared.

Results

The mean follow-up in the CRPIF group was 33.9 months. Complications included two cases of avascular necrosis (AVN) and two cases of osteoarthritis. All patients achieved bony union and recovered their pre-operative mobility. The mean follow-up in the ORIF group was 39 months. Complications included two cases of bony nonunion, nine AVN, and seven cases of osteoarthritis. Moreover, the mobility of the ORIF group was significantly lower than the CRPIF group post-operatively. The AOFAS score, VAS score, and SF-12 physical component score (PCS) for the CRPIF group were better improved than those for the ORIF group (ALL, P < 0.05).

Conclusions

The CRPIF technique of the bilateral approach of the Achilles tendon was an effective method for the treatment of simple displaced talar neck fractures. Compared with the ORIF, the limited blood supply of the talus was protected, provide better functional outcomes and biomechanical fixation, and lower incidence of resurgery and complication in the CRPIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data of this study were real. The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Dodd A, Lefaivre KA (2015) Outcomes of talar neck fractures: a systematic review and meta-analysis. J Orthop Trauma 29(5):210–5. https://doi.org/10.1097/BOT.0000000000000297

    Article  PubMed  Google Scholar 

  2. Prasarn ML, Miller AN, Dyke JP et al (2010) Arterial anatomy of the talus: a cadaver and gadolinium-enhanced MRI study. Foot Ankle Int 31(11):987–993. https://doi.org/10.3113/FAI.2010.0987

    Article  PubMed  Google Scholar 

  3. Miller AN, Prasarn ML, Dyke JP et al (2011) Quantitative assessment of the vascularity of the talus with gadolinium-enhanced magnetic resonance imaging. J Bone Joint Surg Am 93(12):1116–1121. https://doi.org/10.2106/JBJS.J.00693

    Article  PubMed  Google Scholar 

  4. Lee C, Brodke D, Perdue PW Jr, Patel T (2020) Talus fractures: evaluation and treatment. J Am Acad Orthop Surg 28(20):e878–e887. https://doi.org/10.5435/JAAOS-D-20-00116

    Article  PubMed  Google Scholar 

  5. Jordan RK, Bafna KR, Liu J, Ebraheim NA (2017) Complications of talar neck fractures by Hawkins classification: a systematic review. J Foot Ankle Surg 56(4):817–821. https://doi.org/10.1053/j.jfas.2017.04.013

    Article  PubMed  Google Scholar 

  6. Melenevsky Y, Mackey RA, Abrahams RB, Thomson NB 3rd (2015) Talar fractures and dislocations: a radiologist’s guide to timely diagnosis and classification. Radiographics 35(3):765–779. https://doi.org/10.1148/rg.2015140156

    Article  PubMed  Google Scholar 

  7. Fortin PT, Balazsy JE (2001) Talus fractures: evaluation and treatment. J Am Acad Orthop Surg 9(2):114–127. https://doi.org/10.5435/00124635-200103000-00005

    Article  CAS  PubMed  Google Scholar 

  8. Hawkins LG (1970) Fractures of the neck of the talus. J Bone Joint Surg Am 52(5):991–1002

    Article  CAS  Google Scholar 

  9. Vallier HA (2015) Fractures of the talus: state of the art. J Orthop Trauma 29(9):385–392. https://doi.org/10.1097/BOT.0000000000000378

    Article  PubMed  Google Scholar 

  10. Segura FP, Eslava S (2020) Talar neck fractures: single or double approach? Foot Ankle Clin 25(4):653–665. https://doi.org/10.1016/j.fcl.2020.08.007

    Article  PubMed  Google Scholar 

  11. Vallier HA, Reichard SG, Boyd AJ, Moore TA (2014) A new look at the Hawkins classification for talar neck fractures: which features of injury and treatment are predictive of osteonecrosis? J Bone Joint Surg Am 96(3):192–7. https://doi.org/10.2106/JBJS.L.01680

    Article  PubMed  Google Scholar 

  12. Lindvall E, Haidukewych G, DiPasquale T et al (2004) Open reduction and stable fixation of isolated, displaced talar neck and body fractures. J Bone Joint Surg Am 86(10):2229–2234. https://doi.org/10.2106/00004623-200410000-00014

    Article  PubMed  Google Scholar 

  13. Abdelgaid SM, Ezzat FF (2012) Percutaneous reduction and screw fixation of fracture neck talus. Foot Ankle Surg 18(4):219–228. https://doi.org/10.1016/j.fas.2012.01.003

    Article  PubMed  Google Scholar 

  14. Zhang X, Shao X, Yu Y et al (2017) Comparison between percutaneous and open reduction for treating paediatric talar neck fractures. Int Orthop 41(12):2581–2589. https://doi.org/10.1007/s00264-017-3631-y

    Article  PubMed  Google Scholar 

  15. Beltran MJ, Mitchell PM, Collinge CA (2016) Posterior to anteriorly directed screws for management of talar neck fractures. Foot Ankle Int 37(10):1130–1136. https://doi.org/10.1177/1071100716655434

    Article  PubMed  Google Scholar 

  16. Fan Z, Ma J, Chen J et al (2020) Biomechanical efficacy of four different dual screws fixations in treatment of talus neck fracture: a three-dimensional finite element analysis. J Orthop Surg Res 15(1):45. https://doi.org/10.1186/s13018-020-1560-8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roberts LE, Pinto M, Staggers JR et al (2018) Soft tissue structures at risk with percutaneous posterior to anterior screw fixation of the talar neck. Foot Ankle Int 39(10):1237–1241. https://doi.org/10.1177/1071100718777771

    Article  PubMed  Google Scholar 

  18. Abdelkafy A, Imam MA, Sokkar S, Hirschmann M (2015) Antegrade-retrograde opposing lag screws for internal fixation of simple displaced talar neck fractures. J Foot Ankle Surg 54(1):23–28. https://doi.org/10.1053/j.jfas.2014.09.046

    Article  PubMed  Google Scholar 

  19. Charlson MD, Parks BG, Weber TG, Guyton GP (2006) Comparison of plate and screw fixation and screw fixation alone in a comminuted talar neck fracture model. Foot Ankle Int 27(5):340–343. https://doi.org/10.1177/107110070602700505

    Article  PubMed  Google Scholar 

  20. Ebraheim NA, Mekhail AO, Salpietro BJ et al (1996) Talar neck fractures: anatomic considerations for posterior screw application. Foot Ankle Int 17(9):541–547. https://doi.org/10.1177/107110079601700906

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Qu W, Wang D et al (2015) Talar neck fractures: anatomic landmarks of suitable position for posterolateral screw insertion. Acta Orthop Traumatol Turc 49(3):326–330. https://doi.org/10.3944/AOTT.2015.14.0089

    Article  PubMed  Google Scholar 

  22. Lemaire RG, Bustin W (1980) Screw fixation of fractures of the neck of the talus using a posterior approach. J Trauma 20(8):669–673

    Article  CAS  Google Scholar 

  23. Wu JQ, Ma SH, Liu S et al (2017) Safe zone of posterior screw insertion for talar neck fractures on 3-dimensional reconstruction model. Orthop Surg 9(1):28–33. https://doi.org/10.1111/os.12303

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aktan Ikiz ZA, Ucerler H, Bilge O (2005) The anatomic features of the sural nerve with an emphasis on its clinical importance. Foot Ankle Int 26(7):560–567. https://doi.org/10.1177/107110070502600712

    Article  PubMed  Google Scholar 

  25. Tezval M, Dumont C, Sturmer KM (2007) Prognostic reliability of the Hawkins sign in fractures of the talus. J Orthop Trauma 21(8):538–43. https://doi.org/10.1097/BOT.0b013e318148c665

    Article  PubMed  Google Scholar 

  26. Lam CL, Tse EY, Gandek B (2005) Is the standard SF-12 health survey valid and equivalent for a Chinese population? Qual Life Res 14(2):539–47. https://doi.org/10.1007/s11136-004-0704-3

    Article  PubMed  Google Scholar 

  27. Kitaoka HB, Alexander IJ, Adelaar RS et al (1994) Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int 15(7):349–353. https://doi.org/10.1177/107110079401500701

    Article  CAS  PubMed  Google Scholar 

  28. Hale SA, Hertel J (2005) Reliability and sensitivity of the foot and ankle disability index in subjects with chronic ankle instability. J Athl Train 40(1):35–40

    PubMed  PubMed Central  Google Scholar 

  29. Rammelt S, Zwipp H (2009) Talar neck and body fractures. Injury 40(2):120–135. https://doi.org/10.1016/j.injury.2008.01.021

    Article  PubMed  Google Scholar 

  30. Dale JD, Ha AS, Chew FS (2013) Update on talar fracture patterns: a large level I trauma center study. AJR Am J Roentgenol 201(5):1087–92. https://doi.org/10.2214/AJR.12.9918

    Article  PubMed  Google Scholar 

  31. Jindal N, Gupta P, Jindal S (2014) Nonunion of paediatric talar neck fracture. Chin J Traumatol 17(1):48–49

    PubMed  Google Scholar 

  32. Leonetti D, Di Matteo B, Barca P et al (2018) Complications after displaced talar neck fracture: results from a case series and a critical review of literature. The Open Orthopaedics Journal 12(1):567–575. https://doi.org/10.2174/1874325001812010567

    Article  Google Scholar 

  33. Yoshimura I, Naito M, Kanazawa K et al (2013) Assessing the safe direction of instruments during posterior ankle arthroscopy using an MRI model. Foot Ankle Int 34(3):434–438. https://doi.org/10.1177/1071100712468563

    Article  PubMed  Google Scholar 

  34. Heck J, Mendicino RW, Stasko P et al (2012) An anatomic safe zone for posterior ankle arthroscopy: a cadaver study. J Foot Ankle Surg 51(6):753–756. https://doi.org/10.1053/j.jfas.2012.08.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the significant contribution of the patients, families, researchers, and clinical staff included in this study.

Funding

This work was supported by the Key R & D plan of Shaanxi Province (No. 2021SF-025), Scientific research projects of Xi’an Health Commission (No. 2021ms07).

Author information

Authors and Affiliations

Authors

Contributions

HMZ contributed to the study design, operation, and is the corresponding author. XQY and YZ participated in designing the research, collecting the data and manuscript draft. QW, YDT, and JQL participated in the statistical analysis and the literature search. JHJ prepared the figures and tables. ZHM and LXJ critically revised the manuscript for important intellectual content and gave the final approval of the version to be published. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong-Mou Zhao.

Ethics declarations

Ethics approval

This study has been approved by the ethical committee of Honghui Hospital.

Informed consent

We have obtained the consent to participate from the participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XQ., Zhang, Y., Jia, JH. et al. Closed reduction and posterior percutaneous internal fixation for simple displaced talar neck fracture: a retrospective comparative study. International Orthopaedics (SICOT) 46, 2135–2143 (2022). https://doi.org/10.1007/s00264-022-05432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-022-05432-y

Keywords

Navigation