Skip to main content
Log in

Meniscal scaffold for the treatment of partial meniscal defect—clinical and radiological outcomes in a two-year follow-up

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The aim of meniscal scaffolds is to fill the defect, allow regeneration of meniscal-like tissues, and to prevent long-term risk of cartilage wear and tear. The aim of this study was to evaluate clinical results after two years and magnetic resonance imaging (MRI) results a year after implantation of a meniscal scaffold.

Methods

Fifteen patients were recruited into a prospective, single-arm, single-center study, and treated with meniscal scaffolds as a result of segmental meniscal defect due to previous partial meniscectomy. Patients were evaluated using functional knee scores used pre-operatively and 6, 12, and 24 months postoperatively. The radiological outcome was assessed using MRI at 12 months by evaluating scaffold size, morphology, and intensity according to the Genovese grading system. Cartilage assessment was completed according to The International Cartilage Repair Society (ICRS) score.

Results

All patients completed a follow-up of 24 months. A statistically significant increase in mean levels of all functional scores was present in all patients. On the MRI, all but one of the patients presented an incorporated meniscal implant. In most of the patients (73%), the meniscal implant was a Genovese type III. Type II and III signal intensities were present in all scaffolds when compared with the residual meniscal tissue. A stable cartilage (ICRS) status was observed in 80% of the patients compared with the pre-operative cartilage scores.

Conclusion

In our case series of patients treated with the meniscal scaffold implant, we observed good clinical results at a two year follow-up. Furthermore, MRI findings suggest that meniscal scaffolds might have a beneficial effect on articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baratz ME, Fu FH, Mengato R (1986) Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee: a preliminary report. Am J Sports Med 14:270–275

    Article  CAS  Google Scholar 

  2. Dangelmajer S, Familiari F, Simonetta R, Kaymakoglu M, Huri G (2017) Meniscal transplants and scaffolds: a systematic review of the literature. Knee Surg Relat Res 29(1):3–10

    Article  Google Scholar 

  3. Dhollander A, Verdonk P, Verdonk R (2016) Treatment of painful, irreparable partial meniscal defects with a polyurethane scaffold: midterm clinical outcomes and survival analysis. Am J Sports Med 44(10):2615–2621

    Article  Google Scholar 

  4. Faivre B, Bouyarmane H, Lonjon G, Boisrenoult P, Pujol N, Beaufils P (2015) Actifit® scaffold implantation: influence of preoperative meniscal extrusion on morphological and clinical outcomes. Orthop Traumatol Surg Res 101(6):703–708

    Article  CAS  Google Scholar 

  5. Filardo G, Kon E, Perdisa F, Sessa A, Di Martino A, Busacca M, Zaffagnini S et al (2017) Polyurethane-based cell-free scaffold for the treatment of painful partial meniscus loss. Knee Surg Sports Traumatol Arthrosc 25:459–467

    Article  CAS  Google Scholar 

  6. Genovese E, Angeretti MG, Ronga M, Leonardi A, Novario R, Callegari L et al (2007) Follow-up of collagen meniscus implants by MRI. Radiol Med 112:1036–1048

    Article  CAS  Google Scholar 

  7. Grassi A, Zaffagnini S, Marcheggiani Muccioli GM, Benzi A, Marcacci M (2014) Clinical outcomes and complications of a collagen meniscus implant: a systematic review. Int Orthop 38:1945–1953

    Article  Google Scholar 

  8. Heijink A, Gomoll AH, Madry H, Drobnič M, Filardo G, Espregueira-Mendes J et al (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20:423–435

    Article  Google Scholar 

  9. Hirschmann MT, Keller L, Hirschmann A, Schenk L, Berbig R, Luthi U et al (2013) One-year clinical and MR imaging outcome after partial meniscal replacement in stabilized knees using a collagen meniscus implant. Knee Surg Sports Traumatol Arthrosc 21:740–747

    Article  CAS  Google Scholar 

  10. Karahan M, Kocaoglu B, Cabukoglu C, Akgun U, Nuran R (2010) Effect of partial medial meniscectomy on the proprioceptive function of the knee. Arch Orthop Trauma Surg 130:427–431

    Article  Google Scholar 

  11. Leroy A, Beaufils P, Faivre B, Steltzlen C, Boisrenoult P, Pujol N (2017) Actifit® polyurethane meniscal scaffold: MRI and functional outcomes after a minimum follow-up of 5 years. Orthop Traumatol Surg Res 103(4):609–614

    Article  CAS  Google Scholar 

  12. Lutz C, Dalmay F, Ehkirch FP, Cucurulo T, Laporte C, Le Henaff G, French Arthroscopy Society et al (2015) Meniscectomy versus meniscal repair: 10 years radiological and clinical results in vertical lesions in stable knee. Orthop Traumatol Surg Res 101:S327–S331

    Article  CAS  Google Scholar 

  13. McDermott ID, Amis AA (2006) The consequences of meniscectomy. J Bone Joint Surg (Br) 88(12):1549–1556

    Article  CAS  Google Scholar 

  14. Monllau JC, Gelber PE, Abat F, Pelfort X, Abad R, Hinarejos P et al (2011) Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy 27(7):933–943

    Article  Google Scholar 

  15. Schüttler KF, Haberhauer F, Gesslein M, Heyse TJ, Figiel J, Lorbach O et al (2016) Midterm follow-up after implantation of a polyurethane meniscal scaffold for segmental medial meniscus loss: maintenance of good clinical and MRI outcome. Knee Surg Sports Traumatol Arthrosc 24(5):1478–1484

    Article  Google Scholar 

  16. Schüttler KF, Pöttgen S, Getgood A, Rominger MB, Fuchs-Winkelmann S, Roessler PP et al (2015) Improvement in outcomes after implantation of a novel polyurethane meniscal scaffold for the treatment of medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc 23:1929–1935

    Article  Google Scholar 

  17. Spencer SJ, Saithna A, Carmont MR, Dhillon MS, Thompson P, Spalding T (2012) Meniscal scaffolds: early experience and review of the literature. Knee 19:760–765

    Article  CAS  Google Scholar 

  18. Carter TE, Taylor KA, Spritzer CE, Utturkar GM, Taylor DC, Moorman CT et al (2015) In vivo cartilage strain increases following medial meniscal tear and correlates with synovial fluid matrix metalloproteinase activity. J Biomech 48(8):1461–1468

    Article  Google Scholar 

  19. Thijs Y, Witvrouw E, Evens B, Coorevits P, Almqvist F, Verdonk R (2007) A prospective study on knee proprioception after meniscal allograft transplantation. Scand J Med Sci Sports 17:223–229

    CAS  Google Scholar 

  20. Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W et al (2012) Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med 40:844–853

    Article  Google Scholar 

  21. Verdonk P, Depaepe Y, Desmyter S, De Muynck M, Almqvist KF, Verstraete K et al (2004) Normal and transplanted lateral knee menisci: evaluation of extrusion using magnetic resonance imaging and ultrasound. Knee Surg Sports Traumatol Arthrosc 12:411–419

    Article  Google Scholar 

  22. Verma NN, Kolb E, Cole BJ, Berkson MB, Garretson R, Farr J et al (2008) The effects of medial meniscal transplantation techniques on intra-articular contact pressures. J Knee Surg 21:20–26

    Article  Google Scholar 

  23. Xu C, Zhao J (2015) A meta-analysis comparing meniscal repair with meniscectomy in the treatment of meniscal tears: the more meniscus, the better outcome? Knee Surg Sports Traumatol Arthrosc 23:164–170

    Article  Google Scholar 

  24. Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G et al (2011) Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am J Sports Med 39:977–985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Vuletić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, U., Vuletić, F., Stenhouse, G. et al. Meniscal scaffold for the treatment of partial meniscal defect—clinical and radiological outcomes in a two-year follow-up. International Orthopaedics (SICOT) 45, 977–983 (2021). https://doi.org/10.1007/s00264-020-04811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04811-7

Keywords

Navigation