Skip to main content

Advertisement

Log in

Infectious versus non-infectious loosening of implants: activation of T lymphocytes differentiates between the two entities

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Loosening of implants occurs mainly for two reasons: bacterial infection of the implant or “aseptic loosening” presumably due to wear particles derived from the implant. To gain further insight into the pathomechanism, we analysed activation of the T cell response in these patients.

Methods

Activation of peripheral T lymphocytes was determined by cytofluorometry as down-regulation of CD28 and up-regulation of CD11b. In addition, tissue samples obtained during surgery were analysed by quantitative RT-PCR for gene expression of CD3, CD14 and cathepsin K, as markers for T cells, monocytes/macrophages or osteoclasts, respectively.

Results

Activated T lymphocytes were detected in patients with infection but not in patients with aseptic loosening. Gene expression of CD3 was significantly enhanced in tissues of patients with infection compared to those with aseptic loosening. Expression of CD14 and of cathepsin K did not differ between the two groups.

Conclusion

Implant-associated infection and aseptic loosening are associated with a local inflammatory response, which eventually results in osteoclastogenesis and bone resorption. Systemic T cell activation, in contrast, occurs only in patients with implant-associated infection, and hence analysis of T cell activation markers could serve as a diagnostic tool to differentiate between the two entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364(9431):369–379

    Article  CAS  PubMed  Google Scholar 

  2. Goodman SB (2007) Wear particles, periprosthetic osteolysis and the immune system. Biomaterials 28(34):5044–5048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wooley PH, Schwarz EM (2004) Aseptic loosening. Gene Ther 11(4):402–407

    Article  CAS  PubMed  Google Scholar 

  4. Nelson CL, McLaren AC, McLaren SG, Johnson JW, Smeltzer MS (2005) Is aseptic loosening truly aseptic? Clin Orthop Relat Res 437:25–30

    Article  PubMed  Google Scholar 

  5. Drees P, Eckardt A, Gay RE, Gay S, Huber LC (2007) Mechanisms of disease: Molecular insights into aseptic loosening of orthopedic implants. Nat Clin Pract Rheumatol 3(3):165–171

    Article  CAS  PubMed  Google Scholar 

  6. Wagner C, Obst U, Hansch GM (2205) Implant-associated posttraumatic osteomyelitis: collateral damage by local host defense? Int J Artif Organs 28(11):1172–1180

    Google Scholar 

  7. Purdue PE, Koulouvaris P, Nestor B, Sculco T (2006) The central role of wear debris in periprosthetic osteolysis. HSS J 2(2):102–113

    Article  PubMed Central  PubMed  Google Scholar 

  8. Abu-Amer Y, Darwech I, Clohisy JC (2007) Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther 9(Suppl 1):S6

    Article  PubMed Central  PubMed  Google Scholar 

  9. Granchi D, Ciapetti G, Stea S et al (1999) Cytokine release in mononuclear cells of patients with Co-Cr hip prosthesis. Biomaterials 20(12):1079–1086

    Article  CAS  PubMed  Google Scholar 

  10. Stea S, Visentin M, Granchi D et al (1999) Wear debris and cytokine production in the interface membrane of loosened prostheses. J Biomater Sci Polym Ed 10(2):247–257

    Article  CAS  PubMed  Google Scholar 

  11. Gaida MM, Mayer B, Stegmaier S, Schirmacher P, Wagner C, Hansch GM (2012) Polymorphonuclear neutrophils in osteomyelitis: link to osteoclast generation and bone resorption. Eur J Inflamm 10(3):413–426

    CAS  Google Scholar 

  12. Wagner C, Heck D, Lautenschlager K et al (2006) T lymphocytes in implant-associated posttraumatic osteomyelitis: Identification of cytotoxic T effector cells at the site of infection. Shock 25(3):241–246

    Article  CAS  PubMed  Google Scholar 

  13. Wagner C, Kotsougiani D, Pioch M, Prior B, Wentzensen A, Hansch GM (2008) T lymphocytes in acute bacterial infection: increased prevalence of CD11b(+) cells in the peripheral blood and recruitment to the infected site. Immunology 125(4):503–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kotsougiani D, Pioch M, Prior B, Heppert V, Hansch GM, Wagner C (2010) Activation of T lymphocytes in response to persistent bacterial infection: induction of CD11b and of Toll-like receptors on T cells. Int J Inflamm 2010:526740

    Article  Google Scholar 

  15. Henderson B, Nair SP (2003) Hard labour: bacterial infection of the skeleton. Trends Microbiol 11(12):570–577

    Article  CAS  PubMed  Google Scholar 

  16. Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12(1):17–25

    CAS  PubMed  Google Scholar 

  17. Leibbrandt A, Penninger JM (2008) RANK/RANKL: Regulators of immune responses and bone physiology. Ann NY Acad Sci 1143(1):123–150

    Article  CAS  PubMed  Google Scholar 

  18. Walsh NC, Crotti TN, Goldring SR, Gravallese EM (2005) Rheumatic diseases: the effects of inflammation on bone. Immunol Rev 208(1):228–251

    Article  CAS  PubMed  Google Scholar 

  19. Baldwin L, Flanagan BF, McLaughlin PJ, Parkinson RW, Hunt JA, Williams DF (2002) A study of tissue interface membranes from revision accord knee arthroplasty: the role of T lymphocytes. Biomaterials 23(14):3007–3014

    Article  CAS  PubMed  Google Scholar 

  20. Hallab NJ, Anderson S, Stafford T, Glant T, Jacobs JJ (2005) Lymphocyte responses in patients with total hip arthroplasty. J Orthop Res Off Publ Orthop Res Soc 23(2):384–391

    Article  CAS  Google Scholar 

  21. Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11:191–212

    Article  CAS  PubMed  Google Scholar 

  22. Cocks BG, Chang C-CJ, Carballido JM, Yssel H, de Vries JE, Aversa G (1995) A novel receptor involved in T-cell activation. Nature 376(6537):260–263

    Article  CAS  PubMed  Google Scholar 

  23. Christensen JE, Andreasen SØ, Christensen JP, Thomsen AR (2001) CD11b expression as a marker to distinguish between recently activated effector CD8+ T cells and memory cells. Int Immunol 13(4):593–600

    Article  CAS  PubMed  Google Scholar 

  24. McFarland HI, Nahill SR, Maciaszek JW, Welsh RM (1992) CD11b (Mac-1): a marker for CD8+ cytotoxic T cell activation and memory in virus infection. J Immunol 149(4):1326–1333

    CAS  PubMed  Google Scholar 

  25. Fiorentini S, Licenziati S, Alessandri G et al (2001) CD11b expression identifies CD8+CD28+ T lymphocytes with phenotype and function of both naive/memory and effector cells. J Immunol 166(2):900–907

    Article  CAS  PubMed  Google Scholar 

  26. Wagner C, Hänsch GM, Stegmaier S, Denefleh B, Hug F, Schoels M (2001) The complement receptor 3, CR3 (CD11b/CD18), on T lymphocytes: activation-dependent up-regulation and regulatory function. Eur J Immunol 31(4):1173–1180

    Article  CAS  PubMed  Google Scholar 

  27. Vallejo AN (2007) Immune remodeling: lessons from repertoire alterations during chronological aging and in immune-mediated disease. Trends Mol Med 13(3):94–102

    Article  CAS  PubMed  Google Scholar 

  28. Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205(1):158–169

    Article  CAS  PubMed  Google Scholar 

  29. Monteiro J, Batliwalla F, Ostrer H, Gregersen PK (1996) Shortened telomeres in clonally expanded CD28-CD8+ T cells imply a replicative history that is distinct from their CD28 + CD8+ counterparts. J Immunol 156(10):3587–3590

    CAS  PubMed  Google Scholar 

  30. Griem P, Gleichmann E (1995) Metal ion induced autoimmunity. Curr Opin Immunol 7(6):831–838

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Dapunt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dapunt, U., Giese, T., Prior, B. et al. Infectious versus non-infectious loosening of implants: activation of T lymphocytes differentiates between the two entities. International Orthopaedics (SICOT) 38, 1291–1296 (2014). https://doi.org/10.1007/s00264-014-2310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2310-5

Keywords

Navigation