Skip to main content

Advertisement

Log in

Identification of TCR rearrangements specific for genetic alterations in EGFR-mutated non-small cell lung cancer: results from the ADJUVANT-CTONG1104 trial

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor response T cells, which have specific T cell receptor (TCR) rearrangements in tumor-infiltrating lymphocytes, determine their ability to interact with the mutation-derived neoantigens presented by antigen-presenting cells. Little is known about the genetic alterations related to specific TCR clones in non-small cell lung cancer (NSCLC) patients who have an epidermal growth factor receptor (EGFR) mutation. In this study, tumor tissues were collected from 101 patients with stage II/III resectable NSCLC with an EGFR mutation (57 patients were treated with gefitinib and 44 were treated with chemotherapy) in the ADJUVANT-CTONG1104 trial for high-throughput TCRβ V region and exome sequencing. Ten clonal TCRs were associated with EGFR exon 19 deletion (del), EGFR exon 21 mutation (L858R), RB1 alteration, TP53 exon 4/5 missense mutation, TP53 nonsense mutation, or copy number gains in NKX2-1 and CDK4. Among the TCRs, there was frequent use of Vβ20-1Jβ2-3 specifically for EGFR exon 19 del or Vβ9Jβ2-1 specifically for EGFR exon 21 mutation (L858R), and these were significantly associated with favorable overall survival (OS) for NSCLC patients harboring EGFR exon 19 del or exon 21 L858R, particularly in the adjuvant gefitinib setting. Moreover, in comparison with the chemotherapy-preferable (CP) group, higher frequencies of Vβ20-1Jβ2-3 and Vβ9Jβ2-1 were found in the highly TKI-preferable (HTP) or TKI-preferable (TP) groups. Altogether, we identified ten TCR rearrangements specific for genetic alterations in NSCLC. Importantly, high abundance Vβ20-1Jβ2-3 or Vβ9Jβ2-1 may be an immune biomarker for guiding adjuvant gefitinib decisions for NSCLC patients harboring EGFR exon 19 del or EGFR exon 21 L858R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Brozos-Vázquez EM, Díaz-Peña R, García-González J et al (2021) Immunotherapy in nonsmall-cell lung cancer: current status and future prospects for liquid biopsy. Cancer Immunol Immunother 70:1177–1188. https://doi.org/10.1007/s00262-020-02752-z

    Article  PubMed  Google Scholar 

  3. Lu T, Li M, Zhao M et al (2021) Metformin inhibits human non-small cell lung cancer by regulating AMPK-CEBPB-PDL1 signaling pathway. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-021-03116-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Camidge DR, Doebele RC, Kerr KM (2019) Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol 16:341–355. https://doi.org/10.1038/s41571-019-0173-9

    Article  CAS  PubMed  Google Scholar 

  5. Liu SY, Bao H, Wang Q et al (2021) Genomic signatures define three subtypes of EGFR-mutant stage II–III non-small-cell lung cancer with distinct adjuvant therapy outcomes. Nat Commun 12:6450. https://doi.org/10.1038/s41467-021-26806-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang J, Zhou N, Lin A et al (2021) ZFHX3 mutation as a protective biomarker for immune checkpoint blockade in non-small cell lung cancer. Cancer Immunol Immunother 70:137–151. https://doi.org/10.1007/s00262-020-02668-8

    Article  CAS  PubMed  Google Scholar 

  7. Wu YL, Zhou C, Hu CP et al (2014) Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol 15:213–222. https://doi.org/10.1016/s1470-2045(13)70604-1

    Article  CAS  PubMed  Google Scholar 

  8. Fukuoka M, Wu YL, Thongprasert S et al (2011) Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 29:2866–2874. https://doi.org/10.1200/jco.2010.33.4235

    Article  CAS  PubMed  Google Scholar 

  9. Wu YL, Zhou C, Liam CK et al (2015) First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol 26:1883–1889. https://doi.org/10.1093/annonc/mdv270

    Article  PubMed  Google Scholar 

  10. Ramalingam SS, Vansteenkiste J, Planchard D et al (2020) Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 382:41–50. https://doi.org/10.1056/NEJMoa1913662

    Article  CAS  PubMed  Google Scholar 

  11. Yue D, Xu S, Wang Q et al (2018) Erlotinib versus vinorelbine plus cisplatin as adjuvant therapy in Chinese patients with stage IIIA EGFR mutation-positive non-small-cell lung cancer (EVAN): a randomised, open-label, phase 2 trial. Lancet Respir Med 6:863–873. https://doi.org/10.1016/s2213-2600(18)30277-7

    Article  CAS  PubMed  Google Scholar 

  12. Zhong WZ, Wang Q, Mao WM et al (2018) Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II–IIIA (N1–N2) EGFR-mutant NSCLC (ADJUVANT/CTONG1104): a randomised, open-label, phase 3 study. Lancet Oncol 19:139–148. https://doi.org/10.1016/s1470-2045(17)30729-5

    Article  CAS  PubMed  Google Scholar 

  13. Wu YL, Tsuboi M, He J et al (2020) Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N Engl J Med 383:1711–1723. https://doi.org/10.1056/NEJMoa2027071

    Article  CAS  PubMed  Google Scholar 

  14. Pennell NA, Neal JW, Chaft JE et al (2019) SELECT: a phase II trial of adjuvant erlotinib in patients with resected epidermal growth factor receptor-mutant non-small-cell lung cancer. J Clin Oncol 37:97–104. https://doi.org/10.1200/jco.18.00131

    Article  CAS  PubMed  Google Scholar 

  15. (Accessed 4 Feb 2021) FDA approves osimertinib as adjuvant therapy for non-small cell lung cancer with EGFR mutations. https://www.fdagov/drugs/drug-approvals-and-databases/fda-approves-osimertinib-adjuvant-therapy-non-small-cell-lung-cancer-egfr-mutations.

  16. Zhou Q, Xu CR, Cheng Y et al (2021) Bevacizumab plus erlotinib in Chinese patients with untreated, EGFR-mutated, advanced NSCLC (ARTEMIS-CTONG1509): a multicenter phase 3 study. Cancer Cell 39:1279–1291. https://doi.org/10.1016/j.ccell.2021.07.005

    Article  CAS  PubMed  Google Scholar 

  17. Su S, Dong ZY, Xie Z et al (2018) Strong programmed death ligand 1 expression predicts poor response and de novo resistance to EGFR tyrosine kinase inhibitors among NSCLC patients with EGFR mutation. J Thorac Oncol 13:1668–1675. https://doi.org/10.1016/j.jtho.2018.07.016

    Article  PubMed  Google Scholar 

  18. Sugio K, Uramoto H, Onitsuka T et al (2009) Prospective phase II study of gefitinib in non-small cell lung cancer with epidermal growth factor receptor gene mutations. Lung Cancer 64:314–318. https://doi.org/10.1016/j.lungcan.2008.09.010

    Article  PubMed  Google Scholar 

  19. Antonio P, Jänne Pasi A, Tony M et al (2021) Overcoming therapy resistance in EGFR-mutant lung cancer. Nature Cancer 2:377–391. https://doi.org/10.1038/s43018-021-00195-8

    Article  CAS  Google Scholar 

  20. Bremnes RM, Busund LT, Kilvær TL et al (2016) The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer. J Thorac Oncol 11:789–800. https://doi.org/10.1016/j.jtho.2016.01.015

    Article  PubMed  Google Scholar 

  21. Mittal D, Gubin MM, Schreiber RD et al (2014) New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol 27:16–25. https://doi.org/10.1016/j.coi.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Offin M, Rizvi H, Tenet M et al (2019) Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res 25:1063–1069. https://doi.org/10.1158/1078-0432.Ccr-18-1102

    Article  CAS  PubMed  Google Scholar 

  23. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol 16:356–371. https://doi.org/10.1038/s41571-019-0175-7

    Article  CAS  PubMed  Google Scholar 

  24. Shimizu K, Nakata M, Hirami Y et al (2010) Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol 5:585–590. https://doi.org/10.1097/JTO.0b013e3181d60fd7

    Article  PubMed  Google Scholar 

  25. Reuben A, Gittelman R, Gao J et al (2017) TCR repertoire intratumor heterogeneity in localized lung adenocarcinomas: an association with predicted neoantigen heterogeneity and postsurgical recurrence. Cancer Discov 7:1088–1097. https://doi.org/10.1158/2159-8290.Cd-17-0256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wachsmuth LP, Patterson MT, Eckhaus MA et al (2019) Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J Clin Invest 129:2357–2373. https://doi.org/10.1172/jci124218

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fu H, Kishore M, Gittens B et al (2014) Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun 5:3436. https://doi.org/10.1038/ncomms4436

    Article  CAS  PubMed  Google Scholar 

  28. Chen C, Liu Maggie SY, Chen Y et al (2022) Predictive value of TCR Vβ-Jβ profile for adjuvant gefitinib in EGFR-mutant NSCLC from ADJUVANT-CTONG1104 trial. JCI Insight 7:e152631. https://doi.org/10.1172/jci.insight.152631

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen C, Liu Maggie SY, Chen Y et al (2022) Poor prognosis of intra-tumoral TRBV6-6 variants in EGFR-mutant NSCLC: results from the ADJUVANT-CTONG1104 trial. Clin Transl Med. https://doi.org/10.1002/ctm2.775

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen C, Liu Maggie SY, Wu YL et al (2022) Predictive value of intra-tumoral TCRβ rearrangements in precisely selecting adjuvant therapy for EGFR-mutant non-small-cell lung cancer. Clin Transl Discov. https://doi.org/10.1002/ctd2.46

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhong WZ, Wang Q, Mao WM et al (2021) Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II–IIIA (N1–N2) EGFR-Mutant NSCLC: final overall survival analysis of CTONG1104 phase III trial. J Clin Oncol 39:713–722. https://doi.org/10.1200/jco.20.01820

    Article  CAS  PubMed  Google Scholar 

  32. Robin X, Turck N, Hainard A et al (2021) pROC: Display and analyze ROC curves.

  33. Chen C, Liu S, Jiang X et al (2021) Tumor mutation burden estimated by a 69-gene-panel is associated with overall survival in patients with diffuse large B-cell lymphoma. Exp Hematol Oncol 10:20. https://doi.org/10.1186/s40164-021-00215-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen C, Xu L, Gao R et al (2020) Transcriptome-based co-expression of BRD4 and PD-1/PD-L1 predicts poor overall survival in patients with acute myeloid Leukemia. Front Pharmacol 11:582955. https://doi.org/10.3389/fphar.2020.582955

    Article  CAS  PubMed  Google Scholar 

  35. Chen C, Chen Z, Chio CL et al (2021) Higher expression of WT1 with lower CD58 expression may be biomarkers for risk stratification of patients with cytogenetically normal acute myeloid Leukemia. Technol Cancer Res Treat 20:15330338211052152. https://doi.org/10.1177/15330338211052152

    Article  CAS  PubMed  Google Scholar 

  36. Bodenhofer U, Bonatesta E, Horejš-Kainrath C et al (2015) msa: an R package for multiple sequence alignment. Bioinformatics 31:3997–3999. https://doi.org/10.1093/bioinformatics/btv494

    Article  CAS  PubMed  Google Scholar 

  37. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61. https://doi.org/10.1126/science.aaa8172

    Article  CAS  PubMed  Google Scholar 

  38. Galluzzi L, Senovilla L, Zitvogel L et al (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11:215–233. https://doi.org/10.1038/nrd3626

    Article  CAS  PubMed  Google Scholar 

  39. Ahn MJ, Sun JM, Lee SH et al (2017) EGFR TKI combination with immunotherapy in non-small cell lung cancer. Expert Opin Drug Saf 16:465–469. https://doi.org/10.1080/14740338.2017.1300656

    Article  CAS  PubMed  Google Scholar 

  40. Koşaloğlu-Yalçın Z, Lanka M, Frentzen A et al (2018) Predicting T cell recognition of MHC class I restricted neoepitopes. Oncoimmunology 7:e1492508. https://doi.org/10.1080/2162402x.2018.1492508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Canale M, Petracci E, Delmonte A et al (2017) Impact of TP53 mutations on outcome in EGFR-mutated patients treated with first-line tyrosine kinase inhibitors. Clin Cancer Res 23:2195–2202. https://doi.org/10.1158/1078-0432.Ccr-16-0966

    Article  CAS  PubMed  Google Scholar 

  42. Han J, Duan J, Bai H et al (2020) TCR repertoire diversity of peripheral PD-1(+)CD8(+) T cells predicts clinical outcomes after immunotherapy in patients with non-small cell lung cancer. Cancer Immunol Res 8:146–154. https://doi.org/10.1158/2326-6066.Cir-19-0398

    Article  CAS  PubMed  Google Scholar 

  43. Skoulidis F, Heymach JV (2019) Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer 19:495–509. https://doi.org/10.1038/s41568-019-0179-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mollaoglu G, Jones A, Wait SJ et al (2018) The lineage-defining transcription factors SOX2 and NKX2-1 determine lung cancer cell fate and shape the tumor immune microenvironment. Immunity 49:764-779.e769. https://doi.org/10.1016/j.immuni.2018.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ku SY, Rosario S, Wang Y et al (2017) Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355:78–83. https://doi.org/10.1126/science.aah4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marcoux N, Gettinger SN, O’Kane G et al (2019) EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J Clin Oncol 37:278–285. https://doi.org/10.1200/jco.18.01585

    Article  CAS  PubMed  Google Scholar 

  47. Dickson MA (2014) Molecular pathways: CDK4 inhibitors for cancer therapy. Clin Cancer Res 20:3379–3383. https://doi.org/10.1158/1078-0432.Ccr-13-1551

    Article  CAS  PubMed  Google Scholar 

  48. Dao T, Mun SS, Scott AC et al (2019) Depleting T regulatory cells by targeting intracellular Foxp3 with a TCR mimic antibody. Oncoimmunology 8:1570778. https://doi.org/10.1080/2162402x.2019.1570778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Y, Li Y (2019) T cell receptor-engineered T cells for leukemia immunotherapy. Cancer Cell Int 19:2. https://doi.org/10.1186/s12935-018-0720-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang H, Liu L, Zhang J et al (2020) Investigation of antigen-specific T-cell receptor clusters in human cancers. Clin Cancer Res 26:1359–1371. https://doi.org/10.1158/1078-0432.Ccr-19-3249

    Article  CAS  PubMed  Google Scholar 

  51. Thiault N, Darrigues J, Adoue V et al (2015) Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol 16:628–634. https://doi.org/10.1038/ni.3150

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 82202997, 82002413), Guangdong Provincial Applied Science and Technology Research & Development Program (No. 2016B020237006), China Postdoctoral Science Foundation (No. 2021M701422), Guangdong Provincial Key Laboratory of Lung Cancer Translational Medicine (No. 2017B030314120), and CTONG- MSD Lung Cancer Research Grant (No. CTONG-YC20210201).

Author information

Authors and Affiliations

Authors

Contributions

YQL, YLW, and SYL: contributed to the concept development and study design and edited the manuscript. CTC and SYML: interpreted the data and wrote the manuscript. YDC: drafted the Methods and revised the manuscript. QXO: developed the TCR test, performed initial data analysis, and helped edit the manuscript. HB: initial bioinformatic data analysis and reviewed the statistical methodologies and results. JTZ, LX and YKZ: interpreted the data. MH: review and helped edit the manuscript. WZZ, QZ, and XNY: diagnosed and treated the patients and provided clinical samples. YS: supervised data analysis and manuscript editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yi-Long Wu, Si-Yang Liu or Yangqiu Li.

Ethics declarations

Conflict of interest

Yi-Long Wu discloses the following personal financial interest: Consulting and advisory services, speaking engagements for Roche, AstraZeneca, Eli Lilly, Boehringer Ingelheim, Sanofi, MSD, and BMS. Yedan Chen, Qiuxiang Ou, Hua Bao and Yang Shao are the employees of Nanjing Geneseeq Techology Inc.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Guangdong Provincial People's Hospital (No. 2011713).

Informed consent

Written informed consent was received from participants before inclusion in the study. Participants were identified by number, not by name.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 163 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Liu, S.M., Chen, Y. et al. Identification of TCR rearrangements specific for genetic alterations in EGFR-mutated non-small cell lung cancer: results from the ADJUVANT-CTONG1104 trial. Cancer Immunol Immunother 72, 1261–1272 (2023). https://doi.org/10.1007/s00262-022-03330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03330-1

Keywords

Navigation