Skip to main content

Advertisement

Log in

Transcriptomic characterization and construction of M2 macrophage-related prognostic and immunotherapeutic signature in ovarian metastasis of gastric cancer

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Ovarian metastasis (OM) poses a major threat to the outcome of gastric cancer (GC) patients. Recently, immunotherapy emerged as a novel promising therapeutic strategy to treat late-stage GC, whereas its efficacy is influenced by tumor immune microenvironment (TIME). M2 macrophage, a key subset within TIME, plays dual immunosuppressive and pro-tumorigenic roles in cancer progression and is recognized as a potential therapeutic target. However, molecular mechanisms underlying OM remain elusive and the TIME-related prognostic and immunotherapeutic index for these patients is yet to establish.

Methods

Differential expressed genes (DEGs) between paired normal mucosa, primary GC and OM of patients from Fudan University Shanghai Cancer Center (FUSCC) cohort (n = 6) were identified by transcriptome sequencing, followed by the functional annotation of enriched hallmark pathways of DEGs between them. CIBERSORT was used to profile the relative expression level of 22 immune cell subsets in normal tissues, primary and metastatic tumors, followed by weighted gene coexpression network analysis (WGCNA) uncovering immune cell-correlated gene sets. The intersected genes between DEGs and M2 macrophage-related genes were processed by least absolute shrinkage and selection operator (LASSO) regression analysis to construct a predictive signature, M2GO, which was further validated by training set and test set of The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD), GSE62254 and GSE84437 cohorts. GC patients were divided into M2GO-high and -low subgroup according to the optimal cutoff value of the M2GO score. Furthermore, the clinical, molecular and immune features between M2GO-high and -low subgroups were analyzed. Clinical cohorts of immunotherapy were used to validate the predictive value of M2GO in regard to immunotherapy effectiveness.

Results

Transcriptomic sequencing and follow-up analyses of triple-matched normal tissues, primary and ovarian metastatic tumors identified distinctive sets of DEGs and enriched immune-, cancer- and metastasis-related pathways between them. Of note, M2 macrophage, a major immunosuppressive and pro-tumorigenic component within TIME, was significantly up-regulated in OMs. WGCNA and LASSO regression were applied to establish a novel OM- and M2 macrophage-related predictive signature, M2GO, based on M2 macrophage-related prognostic genes including GJA1, MAGED1 and SERPINE1. M2GO served as an independent prognostic factor of GC patients. Comprehensive molecular and immune characterization of M2GO-based subgroups uncovered their distinctive features in terms of enriched functional pathways, tumor mutation burden, key immune checkpoints, major regulators of natural immune cGAS-STING pathway, infiltrated subsets of immune cells and tumor immune exclusion/dysfunction (TIDE) score. Notably, the M2GO score was significantly lower in responsive group than non-responsive group (P < 0.05) in clinical cohort of metastatic GC patients undergoing immunotherapy.

Conclusion

Transcriptomic characterization of paired normal mucosae, primary and ovarian metastatic tumors revealed their unique molecular and immune features. Follow-up analyses established a novel OM- and M2 macrophage-related signature, M2GO, which served as a promising prognostic and immunotherapeutic biomarker to distinguish the clinical outcome, molecular and immune features of GC patients and predict their differential responses to immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and material availability

The transcriptomic sequencing data of the present study were stored in the Gene Expression Omnibus (GEO) database. The access numbers are GSE191139 and GSE206329, respectively.

References

  1. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F (2020) Gastric cancer. Lancet 396(10251):635–648

    Article  CAS  PubMed  Google Scholar 

  2. Kubeček O, Laco J, Špaček J, Petera J, Kopecký J, Kubečková A et al (2017) The pathogenesis, diagnosis, and management of metastatic tumors to the ovary: a comprehensive review. Clin Exp Metastasis 34(5):295–307

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yan D, Du Y, Dai G, Huang L, Xu Q, Yu P (2018) Management of synchronous krukenberg tumors from gastric cancer: a single-center experience. J Cancer 9(22):4197–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma F, Li Y, Li W, Kang W, Liu H, Ma S et al (2019) Metastasectomy improves the survival of gastric cancer patients with krukenberg tumors: a retrospective analysis of 182 patients. Cancer Manag Res 11:10573–10580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L et al (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376(11):1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L et al (2021) First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 398(10294):27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang S, Xie K, Liu T (2021) Cancer immunotherapies: from efficacy to resistance mechanisms - not only checkpoint matters. Front Immunol 12:690112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T (2021) Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther 6(1):72

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27(4):462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES (2019) Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol 9:1512

    Article  PubMed  Google Scholar 

  13. Smyth EC, Gambardella V, Cervantes A, Fleitas T (2021) Checkpoint inhibitors for gastroesophageal cancers: dissecting heterogeneity to better understand their role in first-line and adjuvant therapy. Ann Oncol 32(5):590–599

    Article  CAS  PubMed  Google Scholar 

  14. Gambardella V, Fleitas T, Cervantes A (2019) Understanding mechanisms of primary resistance to checkpoint inhibitors will lead to precision immunotherapy of advanced gastric cancer. Ann Oncol 30(3):351–352

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Li ZY, Zhou GQ, Sun Y (2021) An immune-related gene prognostic index for head and neck squamous cell carcinoma. Clin Cancer Res 27(1):330–341

    Article  PubMed  Google Scholar 

  16. Qian Z, Li Y, Fan X, Zhang C, Wang Y, Jiang T et al (2018) Molecular and clinical characterization of IDH associated immune signature in lower-grade gliomas. Oncoimmunology 7(6):e1434466

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P et al (2020) Large-scale public data reuse to model immunotherapy response and resistance. Genome Med 12(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pan Y, Yu Y, Wang X, Zhang T (2020) Tumor-associated macrophages in tumor immunity. Front Immunol 11:583084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumari N, Choi SH (2022) Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 41(1):68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12(1):76

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou N, Zhou M, Ding N, Li Q, Ren G (2021) An 11-gene signature risk-prediction model based on prognosis-related miRNAs and their target genes in lung adenocarcinoma. Front Oncol 11:726742

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yu SH, Cai JH, Chen DL, Liao SH, Lin YZ, Chung YT et al (2021) LASSO and bioinformatics analysis in the identification of key genes for prognostic genes of gynecologic cancer. J Pers Med 11(11):1177. https://www.mdpi.com/about/announcements/784

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang J, Zhang A, Luo H, Ma C (2022) Construction and validation of a novel gene signature for predicting the prognosis of osteosarcoma. Sci Rep 12(1):1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang M, Chen P, Wang L, Li W, Chen B, Liu Y et al (2020) cGAS-STING, an important pathway in cancer immunotherapy. J Hematol Oncol 13(1):81

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH et al (2018) The immune landscape of cancer. Immunity 48(4):812–30.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. (2014) 513(7517):202-209

  27. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS et al (2015) Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21(5):449–456

    Article  CAS  PubMed  Google Scholar 

  28. Pietrantonio F, Randon G, Di Bartolomeo M, Luciani A, Chao J, Smyth EC et al (2021) Predictive role of microsatellite instability for PD-1 blockade in patients with advanced gastric cancer: a meta-analysis of randomized clinical trials. ESMO Open 6(1):100036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sidaway P (2018) Immunotherapy-responsive gastric cancers identified. Nat Rev Gastroenterol Hepatol 15(10):582

    Article  CAS  PubMed  Google Scholar 

  30. Bai Y, Xie T, Wang Z, Tong S, Zhao X, Zhao F et al (2022) Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virus-associated gastric cancer. J Immunother Cancer 10:e004080. https://doi.org/10.1136/jitc-2021-004080

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X et al (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24(10):1550–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K et al (2018) Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 24(9):1449–1458

    Article  CAS  PubMed  Google Scholar 

  34. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J et al (2017) Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389(10064):67–76

    Article  CAS  PubMed  Google Scholar 

  35. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S et al (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu J, Jin Y, Liu Y, Zhou H, Wang Y. (2019) Abstract CT213: ORIENT-16: Sintilimab plus XELOX vs placebo plus XELOX as 1st line treatment for unresectable advanced gastric and GEJ adenocarcinoma. Cancer Res. 79(13_Supplement):CT213-CT.

  37. Uyeturk U, Arslan SH, Bal O, Arslan UY, Oksuzoglu OB (2013) Isolated ovarian metastasis of gastric cancer: krukenberg tumor. Contemp Oncol (Pozn) 17(6):515–519

    PubMed  Google Scholar 

  38. Baxter MA, Middleton F, Cagney HP, Petty RD (2021) Resistance to immune checkpoint inhibitors in advanced gastro-oesophageal cancers. Br J Cancer 125(8):1068–1079

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen Y, Jia K, Sun Y, Zhang C, Li Y, Zhang L et al (2022) Predicting response to immunotherapy in gastric cancer via multi-dimensional analyses of the tumour immune microenvironment. Nat Commun 13(1):4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14(12):717–734

    Article  CAS  PubMed  Google Scholar 

  41. Afik R, Zigmond E, Vugman M, Klepfish M, Shimshoni E, Pasmanik-Chor M et al (2016) Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med 213(11):2315–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Geng X, Hou J, Wu G (2021) New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int 21(1):389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamaguchi T, Fushida S, Yamamoto Y, Tsukada T, Kinoshita J, Oyama K et al (2016) Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer 19(4):1052–1065

    Article  CAS  PubMed  Google Scholar 

  44. Chen Y, Zhang S, Wang Q, Zhang X (2017) Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 10(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  45. Esseltine JL, Laird DW (2016) Next-generation connexin and pannexin cell biology. Trends Cell Biol 26(12):944–955

    Article  CAS  PubMed  Google Scholar 

  46. Ruch R (2020) Gap Junctions and connexins in cancer formation, progression, and therapy. Cancers (Basel) 12(11):3307

    Article  PubMed  Google Scholar 

  47. Wu JI, Wang LH (2019) Emerging roles of gap junction proteins connexins in cancer metastasis, chemoresistance and clinical application. J Biomed Sci 26(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li CH, Hao ML, Sun Y, Wang ZJ, Li JL (2020) Ultrastructure of gap junction and Cx43 expression in gastric cancer tissues of the patients. Arch Med Sci 16(2):352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao X, Yu C, Zheng M, Sun J (2019) Prognostic value of the mRNA expression of gap junction α members in patients with gastric cancer. Oncol Lett 18(2):1669–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang B, Peng ZH, Yu PW, Yu G, Qian F (2011) Expression and significance of Cx43 and E-cadherin in gastric cancer and metastatic lymph nodes. Med Oncol 28(2):502–508

    Article  CAS  PubMed  Google Scholar 

  51. Tang B, Peng ZH, Yu PW, Yu G, Qian F, Zeng DZ et al (2013) Aberrant expression of Cx43 is associated with the peritoneal metastasis of gastric cancer and Cx43-mediated gap junction enhances gastric cancer cell diapedesis from peritoneal mesothelium. PLoS ONE 8(9):e74527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A, Tannis LL et al (2000) NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 27(2):279–288

    Article  CAS  PubMed  Google Scholar 

  53. Chu CS, Xue B, Tu C, Feng ZH, Shi YH, Miao Y et al (2007) NRAGE suppresses metastasis of melanoma and pancreatic cancer in vitro and in vivo. Cancer Lett 250(2):268–275

    Article  CAS  PubMed  Google Scholar 

  54. Du Q, Zhang Y, Tian XX, Li Y, Fang WG (2009) MAGE-D1 inhibits proliferation, migration and invasion of human breast cancer cells. Oncol Rep 22(3):659–665

    CAS  PubMed  Google Scholar 

  55. Shimizu D, Kanda M, Sugimoto H, Sueoka S, Takami H, Ezaka K et al (2016) NRAGE promotes the malignant phenotype of hepatocellular carcinoma. Oncol Lett 11(3):1847–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeng ZL, Wu WJ, Yang J, Tang ZJ, Chen DL, Qiu MZ et al (2012) Prognostic relevance of melanoma antigen D1 expression in colorectal carcinoma. J Transl Med 10:181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dai S, Liu T, Liu XQ, Li XY, Xu K, Ren T et al (2021) Identification of an immune-related signature predicting survival risk and immune microenvironment in gastric cancer. Front Cell Dev Biol 9:687473

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sillen M, Declerck PJ (2021) A narrative review on plasminogen activator inhibitor-1 and its (Patho)physiological role: to target or not to target? Int J Mol Sci 22(5):2722

    Article  Google Scholar 

  59. Chen S, Li Y, Zhu Y, Fei J, Song L, Sun G et al (2022) SERPINE1 overexpression promotes malignant progression and poor prognosis of gastric cancer. J Oncol 2022:2647825

    PubMed  PubMed Central  Google Scholar 

  60. Yang JD, Ma L, Zhu Z (2019) SERPINE1 as a cancer-promoting gene in gastric adenocarcinoma: facilitates tumour cell proliferation, migration, and invasion by regulating EMT. J Chemother 31(7–8):408–418

    Article  CAS  PubMed  Google Scholar 

  61. Tan P, Chen H, Huang Z, Huang M, Du Y, Li T et al (2021) MMP25-AS1/hsa-miR-10a-5p/SERPINE1 axis as a novel prognostic biomarker associated with immune cell infiltration in KIRC. Mol Ther Oncolytics 22:307–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang S, Pang L, Liu Z, Meng X (2021) SERPINE1 associated with remodeling of the tumor microenvironment in colon cancer progression: a novel therapeutic target. BMC Cancer 21(1):767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang X, Zhang F, He D, Ji X, Gao J, Liu W et al (2021) Immune-Related gene SERPINE1 is a novel biomarker for diffuse lower-grade gliomas via large-scale analysis. Front Oncol 11:646060

    Article  PubMed  PubMed Central  Google Scholar 

  64. Havel JJ, Chowell D, Chan TA (2019) The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 19(3):133–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tay RE, Richardson EK, Toh HC (2021) Revisiting the role of CD4(+) T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther 28(1–2):5–17

    Article  CAS  PubMed  Google Scholar 

  66. Puliga E, Corso S, Pietrantonio F, Giordano S (2021) Microsatellite instability in gastric cancer: between lights and shadows. Cancer Treat Rev 95:102175

    Article  PubMed  Google Scholar 

  67. Ou L, Zhang A, Cheng Y, Chen Y (2021) The cGAS-STING pathway: a promising immunotherapy target. Front Immunol 12:795048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kang K, Park SH, Chen J, Qiao Y, Giannopoulou E, Berg K et al (2017) Interferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity 47(2):235–50.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jorgovanovic D, Song M, Wang L, Zhang Y (2020) Roles of IFN-γ in tumor progression and regression: a review. Biomark Res 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen Y, Lin H, Pi YN, Chen XX, Zhou H, Tian Y et al (2021) Development and validation of a prognostic signature based on immune genes in cervical cancer. Front Oncol 11:616530

    Article  PubMed  PubMed Central  Google Scholar 

  71. Xue YN, Xue YN, Wang ZC, Mo YZ, Wang PY, Tan WQ (2020) A novel signature of 23 immunity-related gene pairs is prognostic of cutaneous melanoma. Front Immunol 11:576914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang S, Lv M, Cheng Y, Wang S, Li C, Qu X (2021) Immune landscape of advanced gastric cancer tumor microenvironment identifies immunotherapeutic relevant gene signature. BMC Cancer 21(1):1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wei S, Lu J, Lou J, Shi C, Mo S, Shao Y et al (2020) Gastric cancer tumor microenvironment characterization reveals stromal-related gene signatures associated with macrophage infiltration. Front Genet 11:663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang T, Dai L, Shen S, Yang Y, Yang M, Yang X et al (2022) Comprehensive molecular analyses of a macrophage-related gene signature with regard to prognosis, immune features, and biomarkers for immunotherapy in hepatocellular carcinoma based on WGCNA and the LASSO algorithm. Front Immunol 13:843408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li X, Wen D, Li X, Yao C, Chong W, Chen H (2020) Identification of an immune signature predicting prognosis risk and lymphocyte infiltration in colon cancer. Front Immunol 11:1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Riihimäki M, Hemminki A, Sundquist K, Sundquist J, Hemminki K (2016) Metastatic spread in patients with gastric cancer. Oncotarget 7(32):52307–52316

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rosa F, Marrelli D, Morgagni P, Cipollari C, Vittimberga G, Framarini M et al (2016) Krukenberg tumors of gastric origin: the rationale of surgical resection and perioperative treatments in a multicenter western experience. World J Surg 40(4):921–928

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dazhi Xu for his suggestions on the design and data analyses of this study.

Funding

This work was supported by the grants from National Natural Science Foundation of China (No. 82203725), Natural Science Foundation of Shanghai (22ZR1413000) and Shanghai Science and Technology Development Fund (19MC1911000).

Author information

Authors and Affiliations

Authors

Contributions

JG, MX and HP contributed to conception and design and collected and assembled the data. MX and HP provided administrative support, study materials or patients. JG, HZ, SH, MX and HP analyzed and interpreted the data. All authors wrote the manuscript and gave final approval of the manuscript.

Corresponding authors

Correspondence to Jianpeng Gao, Midie Xu or Hongda Pan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

The present study was previously approved by the Ethics Committee of FUSCC, and the informed consent was received from all participating patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 687 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Zhao, Z., Zhang, H. et al. Transcriptomic characterization and construction of M2 macrophage-related prognostic and immunotherapeutic signature in ovarian metastasis of gastric cancer. Cancer Immunol Immunother 72, 1121–1138 (2023). https://doi.org/10.1007/s00262-022-03316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03316-z

Keywords

Navigation