Skip to main content
Log in

Circulating PD-L1 is associated with T cell infiltration and predicts prognosis in patients with CRLM following hepatic resection

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Exosomal PD-L1 (exoPD-L1) could induce immunosuppression functionally, thus impairing patients’ survival in melanoma, NSCLC, and gastric cancer. However, no evidence demonstrates the feasibility of circulating exoPD-L1 and soluble PD-L1 (sPD-L1) as biomarkers for prognosis and early recurrence in colorectal liver metastasis (CRLM) patients following hepatectomy or their association with T cell infiltration at liver metastases.

Methods

In cohort 1, exoPD-L1 and sPD-L1 were preoperatively tested using ELISA. CD3, CD8, granzyme B (GB) and PD1 expressed at liver metastases were evaluated using immunohistochemistry. In cohort 2, exoPD-L1 and sPD-L1 were detected at baseline, before hepatectomy, after hepatectomy, and after disease progression.

Results

In cohort 1, higher preoperative exoPD-L1 or sPD-L1 significantly impaired RFS (exoPD-L1, P = 0.0043; sPD-L1, P = 0.0041) and OS (exoPD-L1, P = 0.0034; sPD-L1, P = 0.0061). Furthermore, preoperative exoPD-L1 was negatively correlated with CD3 + T-lymphocytes infiltrated at tumor center (CT), and GB and PD1 were expressed at tumor invasive margin (IM). Preoperative sPD-L1 was negatively correlated with CD3 + and CD8 + T-lymphocytes’ infiltration at IM and CT, GB and PD1 expression at IM. In cohort 2, exoPD-L1 and sPD-L1 levels decreased following hepatectomy but increased when tumor progressed. Moreover, higher postoperative exoPD-L1 and sPD-L1 or a small reduction in exoPD-L1 and sPD-L1 levels after hepatectomy suggested higher early recurrence rate.

Conclusions

Both preoperative exoPD-L1 and sPD-L1 had promising prognostic values and were associated with T cell infiltration at liver metastases in CRLM patients following hepatectomy. Dynamically tracking exoPD-L1 and sPD-L1 levels could monitor disease status and detect early recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The authenticity of this article has been validated by uploading the key raw data onto the Research Data Deposit public platform (www.researchdata.org.cn).

Reference:s

  1. Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  Google Scholar 

  2. Dai Z et al (2012) Analysis and prediction of colorectal cancer incidence trend in China. Zhonghua Yu Fang Yi Xue Za Zhi 46(7):598–603

    PubMed  Google Scholar 

  3. Abdalla EK et al (2004) Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 239(6):818–25

    Article  PubMed  PubMed Central  Google Scholar 

  4. Iwai T et al (2020) Circulating cell-free long DNA fragments predict post-hepatectomy recurrence of colorectal liver metastases. Eur J Surg Oncol 46(1):108–114

    Article  PubMed  Google Scholar 

  5. Fong Y et al (1999) Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 230(3):309–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Y et al (2018) The Immunoscore system predicts prognosis after liver metastasectomy in colorectal cancer liver metastases. Cancer Immunol Immunother 67(3):435–444

    Article  PubMed  Google Scholar 

  7. Mlecnik B et al (2018) Comprehensive Intrametastatic Immune Quantification and Major Impact of Immunoscore on Survival. J Natl Cancer Inst 110(4):438

    Article  Google Scholar 

  8. Francisco LM et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206(13):3015–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daassi D, Mahoney KM, Freeman GJ (2020) The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol 20(4):209–215

    Article  CAS  PubMed  Google Scholar 

  10. Xie F et al (2019) The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol Cancer 18(1):146

    Article  PubMed  PubMed Central  Google Scholar 

  11. Becker A et al (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30(6):836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Orme JJ et al (2020) ADAM10 and ADAM17 cleave PD-L1 to mediate PD-(L)1 inhibitor resistance. Oncoimmunology 9(1):1744980

    Article  PubMed  PubMed Central  Google Scholar 

  13. Romero Y, Wise R, Zolkiewska A (2020) Proteolytic processing of PD-L1 by ADAM proteases in breast cancer cells. Cancer Immunol Immunother 69(1):43–55

    Article  CAS  PubMed  Google Scholar 

  14. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  Google Scholar 

  15. Morrissey SM, Yan J (2020) Exosomal PD-L1: Roles in Tumor Progression and Immunotherapy. Trends Cancer 6(7):550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whiteside TL (2016) Exosomes and tumor-mediated immune suppression. J Clin Invest 126(4):1216–1223

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cordonnier M et al (2020) Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles 9(1):1710899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Theodoraki MN et al (2018) Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin Cancer Res 24(4):896–905

    Article  CAS  PubMed  Google Scholar 

  19. Fan Y et al (2019) Exosomal PD-L1 retains immunosuppressive activity and is associated with gastric cancer prognosis. Ann Surg Oncol 26(11):3745–3755

    Article  PubMed  Google Scholar 

  20. Chen G et al (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wright MN, Dankowski T, Ziegler A (2017) Unbiased split variable selection for random survival forests using maximally selected rank statistics. Stat Med 36(8):1272–1284

    Article  PubMed  Google Scholar 

  22. Kim DH et al (2019) Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med 51(8):1–13

    PubMed  PubMed Central  Google Scholar 

  23. Poggio M et al (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177(2):414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berthel A et al (2017) Detailed resolution analysis reveals spatial T cell heterogeneity in the invasive margin of colorectal cancer liver metastases associated with improved survival. Oncoimmunology 6(3):e1286436

    Article  PubMed  PubMed Central  Google Scholar 

  25. Katz SC et al (2009) T cell infiltrate predicts long-term survival following resection of colorectal cancer liver metastases. Ann Surg Oncol 16(9):2524–2530

    Article  PubMed  Google Scholar 

  26. Chang B et al (2019) The correlation and prognostic value of serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death-ligand 1 (sPD-L1) in patients with hepatocellular carcinoma. Cancer Immunol Immunother 68(3):353–363

    Article  CAS  PubMed  Google Scholar 

  27. Finkelmeier F et al (2016) High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis. Eur J Cancer 59:152–159

    Article  CAS  PubMed  Google Scholar 

  28. Kim HJ et al (2018) Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular carcinoma patients treated with radiotherapy. Radiother Oncol 129(1):130–135

    Article  CAS  PubMed  Google Scholar 

  29. Shigemori T et al (2018) Soluble PD-L1 Expression in Circulation as a Predictive Marker for Recurrence and Prognosis in Gastric Cancer: Direct Comparison of the Clinical Burden Between Tissue and Serum PD-L1 Expression. Ann Surg Oncol 26(3):876–883

    Article  PubMed  Google Scholar 

  30. Wei W et al (2018) Prognostic significance of circulating soluble programmed death ligand-1 in patients with solid tumors: A meta-analysis. Medicine 97(3):e9617

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang KN et al (2019) Effects of different levels of soluble PD-L1 protein on the growth of Lewis lung cancer transplanted tumor. J Biol Regul Homeost Agents 33(2):537–542

    CAS  PubMed  Google Scholar 

  32. Frigola X et al (2011) Identification of a soluble form of B7–H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma. Clin Cancer Res 17(7):1915–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mahoney KM et al (2019) A secreted PD-L1 splice variant that covalently dimerizes and mediates immunosuppression. Cancer Immunol Immunother 68(3):421–432

    Article  CAS  PubMed  Google Scholar 

  34. Frigola X et al (2012) Soluble B7–H1: differences in production between dendritic cells and T cells. Immunol Lett 142(1–2):78–82

    Article  CAS  PubMed  Google Scholar 

  35. Ruffner MA et al (2009) B7–1/2, but not PD-L1/2 molecules, are required on IL-10-treated tolerogenic DC and DC-derived exosomes for in vivo function. Eur J Immunol 39(11):3084–3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alsaab HO et al (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    Article  PubMed  PubMed Central  Google Scholar 

  37. Owen D et al (2018) Expression patterns, prognostic value, and intratumoral heterogeneity of PD-L1 and PD-1 in thymoma and thymic carcinoma. J Thorac Oncol 13(8):1204–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pollari M et al (2018) PD-L1(+) tumor-associated macrophages and PD-1(+) tumor-infiltrating lymphocytes predict survival in primary testicular lymphoma. Haematologica 103(11):1908–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren X et al (2018) PD1 protein expression in tumor infiltrated lymphocytes rather than PDL1 in tumor cells predicts survival in triple-negative breast cancer. Cancer Biol Ther 19(5):373–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim JR et al (2013) Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas. PLoS One 8(12):e82870

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hohtari H et al (2019) Immune cell constitution in bone marrow microenvironment predicts outcome in adult ALL. Leukemia 33(7):1570–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma J et al (2019) PD1(Hi) CD8(+) T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J Immunother Cancer 7(1):331

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ueda K et al (2018) Prognostic value of PD-1 and PD-L1 expression in patients with metastatic clear cell renal cell carcinoma. Urol Oncol 36(11):499.e9-499.e16

    Article  CAS  Google Scholar 

  44. Li Y et al (2016) Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer 15(1):55

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81872010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruihua Xu or Yuhong Li.

Ethics declarations

Conflicts of interest

The authors declare that they do not have any conflict of interest.

Ethics approval

All access to blood samples and clinical data for research was approved by the institutional review board and ethics committee of Sun Yat-sen University Cancer Center (B2020-018–01).

Consent to participate

Written informed consent was provided by all participants of this study.

Consent for publication

All authors reviewed and approved the manuscript for submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1524 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Du, Z., Huang, M. et al. Circulating PD-L1 is associated with T cell infiltration and predicts prognosis in patients with CRLM following hepatic resection. Cancer Immunol Immunother 71, 661–674 (2022). https://doi.org/10.1007/s00262-021-03021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03021-3

Keywords

Navigation