Skip to main content

Advertisement

Log in

T-cell responses and combined immunotherapy against human carbonic anhydrase 9-expressing mouse renal cell carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) is known to respond to immune checkpoint blockade (ICB) therapy, whereas there has been limited analysis of T-cell responses to RCC. In this study, we utilized human carbonic anhydrase 9 (hCA9) as a model neoantigen of mouse RENCA RCC. hCA9-expressing RENCA RCC (RENCA/hCA9) cells were rejected in young mice but grew in aged mice. CD8+ T cells were the primary effector cells involved in rejection in young mice, whereas CD4+ T cells participated at the early stage. Screening of a panel of hCA9-derived peptides revealed that mouse CD8+ T cells responded to hCA9288–296 peptide. Mouse CD4+ T cells responded to lysates of RENCA/hCA9, but not RENCA cells, and showed reactivity to hCA9 276–290, which shares three amino acids with hCA9 288–296 peptide. Immunohistochemistry analysis revealed that few T cells infiltrated RENCA/hCA9 tissues in aged mice. ICB therapy of anti-PD-1/anti-CTLA-4 antibodies promoted T-cell infiltration into tumor tissues, whereas no definite antitumor effect was observed. However, additional combination with cyclophosphamide or axitinib, a vascular endothelial growth factor receptor inhibitor, induced complete regression in half of the RENCA/hCA9-bearing aged mice with increased expression of PD-L1 in tumor tissues. These results indicate that hCA9 can be a useful model neoantigen to investigate antitumor T-cell responses in mice with RCC, and that RENCA/hCA9 in aged mice can serve as a non-inflamed ‘cold’ tumor model facilitating the development of effective combined immunotherapies for RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Topalian S, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287. https://doi.org/10.1038/nrc.2016.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ott PA, Hodi FS, Robert C (2013) CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 19(19):5300–5309. https://doi.org/10.1158/1078-0432.CCR-13-0143

    Article  CAS  PubMed  Google Scholar 

  4. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33(17):1974–1982. https://doi.org/10.1200/JCO.2014.59.4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gubin MM, Zhang X, Schuster H et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581. https://doi.org/10.1038/nature13988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214. https://doi.org/10.1016/j.cell.2015.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Allen EM, Miao D, Schilling B et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350(6257):207–211. https://doi.org/10.1126/science.aad0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128. https://doi.org/10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turajlic S, Litchfield K, Xu H et al (2017) Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol 18(8):1009–1021. https://doi.org/10.1016/S1470-2045(17)30516-8

    Article  CAS  PubMed  Google Scholar 

  11. Hansen UK, Ramskov S, Bjerregaard AM et al (2020) Tumor-infiltrating T cells from clear cell renal cell carcinoma patients recognize neoepitopes derived from point and frameshift mutations. Front Immunol 11:373. https://doi.org/10.3389/fimmu.2020.00373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kawagoe N, Shintaku I, Yutani S, Etoh H, Matsuoka K, Noda S, Itoh K (2000) Expression of the SART3 tumor rejection antigen in renal cell carcinoma. J Urol 164(6):2090–2095

    Article  CAS  PubMed  Google Scholar 

  13. Flad T, Spengler B, Kalbacher H et al (1998) Direct identification of major histocompatibility complex class I-bound tumor-associated peptide antigens of a renal carcinoma cell line by a novel mass spectrometric method. Cancer Res 58(24):5803–5811

    CAS  PubMed  Google Scholar 

  14. Hanada K, Yewdell JW, Yang JC (2004) Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427(6971):252–256. https://doi.org/10.1038/nature02240

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi Y, Harashima N, Kajigaya S et al (2008) Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J Clin Invest 118(3):1099–1109. https://doi.org/10.1172/JCI34409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Minami T, Minami T, Shimizu N, Yamamoto Y, De Velasco M, Nozawa M, Yoshimura K, Harashima N, Harada M, Uemura H (2014) Identification of erythropoietin receptor-derived peptides having the potential to induce cancer-reactive cytotoxic T lymphocytes from HLA-A24+ patients with renal cell carcinoma. Int Immunopharm 20(1):59–65. https://doi.org/10.1016/j.intimp.2014.02.018

    Article  CAS  Google Scholar 

  17. Minami T, Minami T, Shimizu N, Yamamoto Y, De Velasco M, Nozawa M, Yoshimura K, Harashima N, Harada M, Uemura H (2015) Identification of programmed death ligand 1-derived peptides capable of inducing cancer-reactive cytotoxic T lymphocytes from HLA-A24+ patients with renal cell carcinoma. J Immunother 38(7):285–291. https://doi.org/10.1097/CJI.0000000000000090

    Article  CAS  PubMed  Google Scholar 

  18. Minami T, Matsumura N, Sugimoto K, Shimizau N, De Velsasco Nozawa M, Yoshimura K, Harashima N, Harada M, Uemura H (2017) Hypoxia-inducing factor (HIF)-1a-derived peptide capable of inducing cancer-reactive cytotoxic T lymphocytes from HLA-A24+ patients with renal cell carcinoma. Int Immunopharm 44:197–202. https://doi.org/10.1016/j.intimp.2017.01.014

    Article  CAS  Google Scholar 

  19. Komohara Y, Harada M, Ishihara Y, Suekane S, Nogichi M, Yamada A, Itoh K (2007) HLA-G as a target molecule in specific immunotherapy against renal cell carcinoma. Oncol Rep 18(6):1463–1468

    CAS  PubMed  Google Scholar 

  20. Pantuck AJ, Zeng G, Belldegrun AS et al (2003) Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res 9(13):4641–4652

    CAS  PubMed  Google Scholar 

  21. Uemura H, Okajima E, Debruyne FM, Oosterwijk E (1994) Internal image anti-idiotype antibodies related to renal-cell carcinoma-associated antigen G250. Int J Cancer 56(4):609–614. https://doi.org/10.1002/ijc.2910560424

    Article  CAS  PubMed  Google Scholar 

  22. Uemura H, Fujimoto K, Tanaka M, Yoshikawa M, Hirao Y, Uejima S, Yoshikawa K, Itoh K (2006) A phase I trial of vaccination of CA9-derived peptides for HLA-A24-positive patients with cytokine-refractory metastatic renal cell carcinoma. Clin Cancer Res 12(6):1768–1775. https://doi.org/10.1158/1078-0432.CCR-05-2253

    Article  CAS  PubMed  Google Scholar 

  23. Shimizu K, Uemura H, Yoshikawa M, Yoshida K, Hirao Y, Iwashima K, Saga S, Yoshikawa K (2003) Induction of antigen specific cellular immunity by vaccination with peptides from MN/CA IX in renal cell carcinoma. Oncol Rep 10(5):1307–1311

    CAS  PubMed  Google Scholar 

  24. Lustgarten J (2009) Cancer, aging and immunotherapy: lessons learned from animal models. Cancer Immunol Immunother 58(12):1979–1989. https://doi.org/10.1007/s00262-009-0677-8

    Article  PubMed  Google Scholar 

  25. Nakagawa T, Ohnishi K, Kosaki Y, Saito Y, Horlad H, Fujiwara Y, Takeya M, Komohara Y (2017) Optimum immunohistochemical procedures for analysis of macrophages in human and mouse formalin fixed paraffin-embedded tissue samples. J Clin Exp Hematop 57(1):31–36. https://doi.org/10.3960/jslrt.17017

    Article  PubMed  PubMed Central  Google Scholar 

  26. Motzer RJ, Penkov K, Haanen J et al (2019) Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. New Engl J Med 380(12):1103–1115. https://doi.org/10.1056/NEJMoa1816047

    Article  CAS  PubMed  Google Scholar 

  27. Rini BI, Plimack ER, Stus V et al (2019) Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. New Engl J Med 380(12):1116–1127. https://doi.org/10.1056/NEJMoa1816714

    Article  CAS  PubMed  Google Scholar 

  28. Youn JI, Nagaraj S, Collazo M, Gabrilovich (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802. https://doi.org/10.4049/jimmunol.181.8.5791

    Article  CAS  PubMed  Google Scholar 

  29. Yang J, Yan J, Liu B (2018) Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol 3(9):978. https://doi.org/10.3389/fimmu.2018.0097

    Article  Google Scholar 

  30. Chai D, Shan H, Wang G et al (2019) Combining DNA vaccine and AIM2 in H1 nanoparticles exert anti-renal carcinoma effects via enhancing tumor-specific multi-functional CD8+ T-cell responses. Mol Cancer Ther 18(2):323–334. https://doi.org/10.1158/1535-7163.MCT-18-0832

    Article  CAS  PubMed  Google Scholar 

  31. Shvarts O1, Janzen N, Lam JS, Leppert JT, Caliliw R, Figlin RA, Belldegrun AS, Zeng G (2006) RENCA/carbonic anhydrase-IX: a murine model of a carbonic-IX-expressing renal cell carcinoma. Urology 68(5):1132–1138. https://doi.org/10.1016/j.urology.2006.08.1073

    Article  PubMed  Google Scholar 

  32. Kim BR, Yang EK, Kim DY, Kim SH, Moon DC, Lee JH, Kim HJ, Lee JC (2012) Generation of anti-tumour immune response using dendritic cells pulsed with carbonic anhydrase IX-Acinetobacter baumannil outer membrane protein A fusion proteins against renal cell carcinoma. Clin Exp Immunol 167(1):73–83. https://doi.org/10.1111/j.1365-2249.2011.04489.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herbert N, Haferkamp A, Schmitz-Winnenthal HF, Zöller M (2010) Concomitant tumor and autoantigen vaccination supports renal cell carcinoma rejection. J Immunol 185(2):902–916. https://doi.org/10.4049/jimmunol.0902683

    Article  CAS  PubMed  Google Scholar 

  34. Birkhäuser FD, Koya RC, Neufeld C et al (2013) Dendritic cell-based immunotherapy in prevention and treatment of renal cell carcinoma: efficacy, safety, and activity of Ad-GM·CAIX in immunocompetent mouse models. J Immunother 36(2):102–111. https://doi.org/10.1097/CJI.0b013e31827bec97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ishikawa S, Matsui Y, Wachi S, Yamaguchi H, Harashima N, Harada M (2016) Age-associated impairment of antitumor immunity in carcinoma-bearing mice and restoration by oral administration of Lentinula edodes mycelia extract. Cancer Immunol Immunotherapy 65(8):961–972. https://doi.org/10.1007/s00262-016-1857-y

    Article  CAS  Google Scholar 

  36. Rammensee HG (1995) Chemistry of peptides associated with MHC class I and class II molecules. Curr Opin Immunol 7(1):85–96. https://doi.org/10.1016/0952-7915(95)80033-6

    Article  CAS  PubMed  Google Scholar 

  37. Albert ML, Jegathesan M, Darnell RB (2001) Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat Immunol 2(11):1010–1017. https://doi.org/10.1038/ni722

    Article  CAS  PubMed  Google Scholar 

  38. Kreiter S, Vormehr, van de Romer N et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520(7780):692–696. https://doi.org/10.1038/nature14426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alspach E, Lussier DM, Miceli AP et al (2019) MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574:696–701. https://doi.org/10.1038/s41586-019-1671-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonaventura P, Shekarian T, Alcazer V et al (2019) Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol 10:168. https://doi.org/10.3389/fimmu.2019.00168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18(3):197–218. https://doi.org/10.1038/s41573-018-0007-y

    Article  CAS  PubMed  Google Scholar 

  43. Iida Y, Harashima N, Motoshima T et al (2017) Contrasting effects of cyclophosphamide on anti-CTLA-4 blockade therapy in two tumor mouse models. Cancer Sci 108(10):1974–1984. https://doi.org/10.1111/cas.13337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330. https://doi.org/10.1038/nature21349

    Article  CAS  PubMed  Google Scholar 

  45. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. https://doi.org/10.1146/annurev-immunol-032712-100008

    Article  CAS  PubMed  Google Scholar 

  46. Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L (2011) Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol 33(4):369–368. https://doi.org/10.1007/s00281-011-0245-0

    Article  CAS  PubMed  Google Scholar 

  47. Four SD, Maenhout SK, Pierre KD, Renmans D, Niclou SP, Thielemans K, Neyns B, Aerts JL (2015) Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model. Oncoimmunol 22(4):e998107. https://doi.org/10.1080/2162402X.2014.998107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by JSPS KAKENHI Grants (No. 17K07217 to M Harada, No. 17K11301 to K Yoshikawa, and No. 19H03794 for H Uemura), Suzuken Memorial Foundation to Y Iida, and SHIMANE “SUIGAN” Project to M Harada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Harada.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 646 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, M., Iida, Y., Kotani, H. et al. T-cell responses and combined immunotherapy against human carbonic anhydrase 9-expressing mouse renal cell carcinoma. Cancer Immunol Immunother 71, 339–352 (2022). https://doi.org/10.1007/s00262-021-02992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02992-7

Keywords

Navigation