Skip to main content
Log in

Stress relief for cancer immunotherapy: implications for the ER stress response in tumor immunity

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The solid tumor microenvironment is replete with factors that present a stress to infiltrating immune cells. Endoplasmic reticulum (ER) stress sensor PKR-like ER kinase (PERK) is primed to sense and respond to the burden of misfolded proteins in the ER lumen induced by cell stressors. PERK has documented roles as a master regulator of acute and chronic responses to cell stress as well as in the regulation of cell metabolism. Here, we provide an overview of the roles of PERK based on what is known and remains to be tested in immune cells in tumors and impacts on tumor control. PERK is one of several ER kinases able to preferentially induce activating transcription factor 4 (ATF4) as a response to cell stress. ATF4 orchestrates the oxidative stress response and governs amino acid metabolism. We discuss the tested role of ATF4 in tumor immunity and provide insight on the dueling protective and deleterious roles that ATF4 may play in the stress of solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM (2016) The integrated stress response. EMBO Rep 17(10):1374–1395. https://doi.org/10.15252/embr.201642195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  3. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16(4):452–466. https://doi.org/10.1101/gad.964702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13(3):365–376. https://doi.org/10.1016/j.devcel.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  5. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274. https://doi.org/10.1038/16729

    Article  CAS  PubMed  Google Scholar 

  6. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108. https://doi.org/10.1016/s1097-2765(00)00108-8

    Article  CAS  PubMed  Google Scholar 

  7. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891. https://doi.org/10.1016/s0092-8674(01)00611-0

    Article  CAS  PubMed  Google Scholar 

  8. Maurel M, Chevet E, Tavernier J, Gerlo S (2014) Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci 39(5):245–254. https://doi.org/10.1016/j.tibs.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  9. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239. https://doi.org/10.1038/sj.cdd.4401984

    Article  CAS  PubMed  Google Scholar 

  10. Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch AG (2001) Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 21(15):5018–5030. https://doi.org/10.1128/mcb.21.15.5018-5030.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S, Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7(6):1165–1176. https://doi.org/10.1016/s1097-2765(01)00265-9

    Article  CAS  PubMed  Google Scholar 

  12. Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, Takeda K, Akira S, Shimokata K, Isobe K (2003) The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J 17(11):1573–1575. https://doi.org/10.1096/fj.02-1184fje

    Article  CAS  PubMed  Google Scholar 

  13. Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153(5):1011–1022. https://doi.org/10.1083/jcb.153.5.1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scheu S, Stetson DB, Reinhardt RL, Leber JH, Mohrs M, Locksley RM (2006) Activation of the integrated stress response during T helper cell differentiation. Nat Immunol 7(6):644–651. https://doi.org/10.1038/ni1338

    Article  CAS  PubMed  Google Scholar 

  15. Hurst KE, Lawrence KA, Robino RA, Ball LE, Chung D, Thaxton JE (2020) Remodeling translation primes CD8(+) T-cell antitumor immunity. Cancer Immunol Res 8(5):587–595. https://doi.org/10.1158/2326-6066.Cir-19-0516

    Article  CAS  PubMed  Google Scholar 

  16. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, Kastenberger M, Bogdan C, Schleicher U, Mackensen A, Ullrich E, Fichtner-Feigl S, Kesselring R, Mack M, Ritter U, Schmid M, Blank C, Dettmer K, Oefner PJ, Hoffmann P, Walenta S, Geissler EK, Pouyssegur J, Villunger A, Steven A, Seliger B, Schreml S, Haferkamp S, Kohl E, Karrer S, Berneburg M, Herr W, Mueller-Klieser W, Renner K, Kreutz M (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24(5):657–671. https://doi.org/10.1016/j.cmet.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  17. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999. https://doi.org/10.4049/jimmunol.172.2.989

    Article  CAS  PubMed  Google Scholar 

  18. Cao Y, Trillo-Tinoco J, Sierra RA, Anadon C, Dai W, Mohamed E, Cen L, Costich TL, Magliocco A, Marchion D, Klar R, Michel S, Jaschinski F, Reich RR, Mehrotra S, Cubillos-Ruiz JR, Munn DH, Conejo-Garcia JR, Rodriguez PC (2019) ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun 10(1):1280. https://doi.org/10.1038/s41467-019-09263-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hurst KE, Lawrence KA, Essman MT, Walton ZJ, Leddy LR, Thaxton JE (2019) Endoplasmic reticulum stress contributes to mitochondrial exhaustion of CD8(+) T cells. Cancer Immunol Res 7(3):476–486. https://doi.org/10.1158/2326-6066.Cir-18-0182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15(5):481–490. https://doi.org/10.1038/ncb2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633. https://doi.org/10.1016/S1097-2765(03)00105-9

    Article  CAS  PubMed  Google Scholar 

  22. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140(15):3079–3093. https://doi.org/10.1242/dev.091744

    Article  CAS  PubMed  Google Scholar 

  23. Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, Khan N, Ubellacker JM, Xie S, Metzger-Filho O, Hoog J, Ellis MJ, Ma CX, Ramm S, Krop IE, Winer EP, Roberts TM, Kim HJ, McAllister SS, Zhao JJ (2017) CDK4/6 inhibition triggers anti-tumour immunity. Nature 548(7668):471–475. https://doi.org/10.1038/nature23465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schaer DA, Beckmann RP, Dempsey JA, Huber L, Forest A, Amaladas N, Li Y, Wang YC, Rasmussen ER, Chin D, Capen A, Carpenito C, Staschke KA, Chung LA, Litchfield LM, Merzoug FF, Gong X, Iversen PW, Buchanan S, de Dios A, Novosiadly RD, Kalos M (2018) The CDK4/6 inhibitor Abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep 22(11):2978–2994. https://doi.org/10.1016/j.celrep.2018.02.053

    Article  CAS  PubMed  Google Scholar 

  25. Brewer JW, Diehl JA (2000) PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 97(23):12625–12630. https://doi.org/10.1073/pnas.220247197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang F, Hamanaka RB, Bobrovnikova-Marjon E, Gordan JD, Dai MS, Lu H, Simon MC, Diehl JA (2006) Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest. J Biol Chem 281(40):30036–30045. https://doi.org/10.1074/jbc.M604674200

    Article  CAS  PubMed  Google Scholar 

  27. Bourougaa K, Naski N, Boularan C, Mlynarczyk C, Candeias MM, Marullo S, Fåhraeus R (2010) Endoplasmic reticulum stress induces G2 cell-cycle arrest via mRNA translation of the p53 isoform p53/47. Mol Cell 38(1):78–88. https://doi.org/10.1016/j.molcel.2010.01.041

    Article  CAS  PubMed  Google Scholar 

  28. Buck MD, Sowell RT, Kaech SM, Pearce EL (2017) Metabolic instruction of immunity. Cell 169(4):570–586. https://doi.org/10.1016/j.cell.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beckermann KE, Dudzinski SO, Rathmell JC (2017) Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor Rev 35:7–14. https://doi.org/10.1016/j.cytogfr.2017.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, Ferris RL, Delgoffe GM (2016) The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45(2):374–388. https://doi.org/10.1016/j.immuni.2016.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, Tonc E, Schreiber RD, Pearce EJ, Pearce EL (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241. https://doi.org/10.1016/j.cell.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, Roychoudhuri R, Palmer DC, Muranski P, Karoly ED, Mohney RP, Klebanoff CA, Lal A, Finkel T, Restifo NP, Gattinoni L (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Investig 123(10):4479–4488. https://doi.org/10.1172/jci69589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crompton JG, Sukumar M, Roychoudhuri R, Clever D, Gros A, Eil RL, Tran E, Hanada K, Yu Z, Palmer DC, Kerkar SP, Michalek RD, Upham T, Leonardi A, Acquavella N, Wang E, Marincola FM, Gattinoni L, Muranski P, Sundrud MS, Klebanoff CA, Rosenberg SA, Fearon DT, Restifo NP (2015) Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res 75(2):296–305. https://doi.org/10.1158/0008-5472.Can-14-2277

    Article  CAS  PubMed  Google Scholar 

  34. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, Pearce EJ, Pearce EL (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36(1):68–78. https://doi.org/10.1016/j.immuni.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  35. Klein Geltink RI, Edwards-Hicks J, Apostolova P, O’Sullivan D, Sanin DE, Patterson AE, Puleston DJ, Ligthart NAM, Buescher JM, Grzes KM, Kabat AM, Stanczak M, Curtis JD, Hässler F, Uhl FM, Fabri M, Zeiser R, Pearce EJ, Pearce EL (2020) Metabolic conditioning of CD8(+) effector T cells for adoptive cell therapy. Nat Metab 2(8):703–716. https://doi.org/10.1038/s42255-020-0256-z

    Article  CAS  PubMed  Google Scholar 

  36. Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, Samborska B, Hsieh WY, Wong AH, Stüve P, Arnold-Schrauf C, Guderian M, Lochner M, Rampertaap S, Romito K, Monsale J, Brönstrup M, Bensinger SJ, Murphy AN, McGuire PJ, Jones RG, Sparwasser T, Berod L (2018) Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab 28(3):504-515.e507. https://doi.org/10.1016/j.cmet.2018.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma R, Ji T, Zhang H, Dong W, Chen X, Xu P, Chen D, Liang X, Yin X, Liu Y, Ma J, Tang K, Zhang Y, Peng Y, Lu J, Zhang Y, Qin X, Cao X, Wan Y, Huang B (2018) A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat Cell Biol 20(1):21–27. https://doi.org/10.1038/s41556-017-0002-2

    Article  CAS  PubMed  Google Scholar 

  38. Hurst KE, Lawrence KA, Reyes Angeles L, Ye Z, Zhang J, Townsend DM, Dolloff N, Thaxton JE (2019) Endoplasmic reticulum protein disulfide isomerase shapes T cell efficacy for adoptive cellular therapy of tumors. Cells. https://doi.org/10.3390/cells8121514

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pollizzi KN, Patel CH, Sun IH, Oh MH, Waickman AT, Wen J, Delgoffe GM, Powell JD (2015) mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. J Clin Investig 125(5):2090–2108. https://doi.org/10.1172/jci77746

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bobrovnikova-Marjon E, Pytel D, Riese MJ, Vaites LP, Singh N, Koretzky GA, Witze ES, Diehl JA (2012) PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation. Mol Cell Biol 32(12):2268–2278. https://doi.org/10.1128/mcb.00063-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66(6):789–800. https://doi.org/10.1016/j.molcel.2017.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460(7251):103–107. https://doi.org/10.1038/nature08097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL, Schulze A (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8(3):224–236. https://doi.org/10.1016/j.cmet.2008.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C, Romero M, Cavener DR, Thompson CB, Diehl JA (2008) PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc Natl Acad Sci USA 105(42):16314–16319. https://doi.org/10.1073/pnas.0808517105

    Article  PubMed  PubMed Central  Google Scholar 

  45. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Investig 109(9):1125–1131. https://doi.org/10.1172/jci15593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376–388. https://doi.org/10.1016/j.cmet.2011.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hardie DG (2004) The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 117(Pt 23):5479–5487. https://doi.org/10.1242/jcs.01540

    Article  CAS  PubMed  Google Scholar 

  48. Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN (2017) Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol Metab 28(11):794–806. https://doi.org/10.1016/j.tem.2017.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Z, Lv Y, Zhao N, Guan G, Wang J (2015) Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death Dis 6(7):e1822–e1822. https://doi.org/10.1038/cddis.2015.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Donnelly N, Gorman AM, Gupta S, Samali A (2013) The eIF2α kinases: their structures and functions. Cell Mol Life Sci 70(19):3493–3511. https://doi.org/10.1007/s00018-012-1252-6

    Article  CAS  PubMed  Google Scholar 

  51. Deng J, Harding HP, Raught B, Gingras A-C, Berlanga JJ, Scheuner D, Kaufman RJ, Ron D, Sonenberg N (2002) Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 12(15):1279–1286. https://doi.org/10.1016/S0960-9822(02)01037-0

    Article  CAS  PubMed  Google Scholar 

  52. Masson GR (2019) Towards a model of GCN2 activation. Biochem Soc Trans 47(5):1481–1488. https://doi.org/10.1042/bst20190331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu L, Han AP, Chen JJ (2001) Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol 21(23):7971–7980. https://doi.org/10.1128/mcb.21.23.7971-7980.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ilan L, Osman F, Namer LS, Eliahu E, Cohen-Chalamish S, Ben-Asouli Y, Banai Y, Kaempfer R (2017) PKR activation and eIF2α phosphorylation mediate human globin mRNA splicing at spliceosome assembly. Cell Res 27(5):688–704. https://doi.org/10.1038/cr.2017.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34(Pt 1):7–11. https://doi.org/10.1042/bst20060007

    Article  CAS  PubMed  Google Scholar 

  56. Blais JD, Filipenko V, Bi M, Harding HP, Ron D, Koumenis C, Wouters BG, Bell JC (2004) Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24(17):7469–7482. https://doi.org/10.1128/mcb.24.17.7469-7482.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cemerski S, Cantagrel A, Van Meerwijk JP, Romagnoli P (2002) Reactive oxygen species differentially affect T cell receptor-signaling pathways. J Biol Chem 277(22):19585–19593. https://doi.org/10.1074/jbc.M111451200

    Article  CAS  PubMed  Google Scholar 

  58. Ligtenberg MA, Mougiakakos D, Mukhopadhyay M, Witt K, Lladser A, Chmielewski M, Riet T, Abken H, Kiessling R (2016) Coexpressed catalase protects chimeric antigen receptor-redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity. J Immunol 196(2):759–766. https://doi.org/10.4049/jimmunol.1401710

    Article  CAS  PubMed  Google Scholar 

  59. Rashidi A, Miska J, Lee-Chang C, Kanojia D, Panek WK, Lopez-Rosas A, Zhang P, Han Y, Xiao T, Pituch KC, Kim JW, Talebian M, Fares J, Lesniak MS (2020) GCN2 is essential for CD8(+) T cell survival and function in murine models of malignant glioma. Cancer Immunol Immunother 69(1):81–94. https://doi.org/10.1007/s00262-019-02441-6

    Article  CAS  PubMed  Google Scholar 

  60. Tameire F, Verginadis II, Leli NM, Polte C, Conn CS, Ojha R, Salas Salinas C, Chinga F, Monroy AM, Fu W, Wang P, Kossenkov A, Ye J, Amaravadi RK, Ignatova Z, Fuchs SY, Diehl JA, Ruggero D, Koumenis C (2019) ATF4 couples MYC-dependent translational activity to bioenergetic demands during tumour progression. Nat Cell Biol 21(7):889–899. https://doi.org/10.1038/s41556-019-0347-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang X, Xia R, Yue C, Zhai W, Du W, Yang Q, Cao H, Chen X, Obando D, Zhu Y, Chen X, Chen JJ, Piganelli J, Wipf P, Jiang Y, Xiao G, Wu C, Jiang J, Lu B (2018) ATF4 regulates CD4(+) T cell immune responses through metabolic reprogramming. Cell Rep 23(6):1754–1766. https://doi.org/10.1016/j.celrep.2018.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vallejo M, Ron D, Miller CP, Habener JF (1993) C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc Natl Acad Sci USA 90(10):4679–4683. https://doi.org/10.1073/pnas.90.10.4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88(9):3720–3724. https://doi.org/10.1073/pnas.88.9.3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huggins CJ, Mayekar MK, Martin N, Saylor KL, Gonit M, Jailwala P, Kasoji M, Haines DC, Quiñones OA, Johnson PF (2015) C/EBPγ is a critical regulator of cellular stress response networks through heterodimerization with ATF4. Mol Cell Biol 36(5):693–713. https://doi.org/10.1128/mcb.00911-15

    Article  PubMed  Google Scholar 

  65. Zhou H, Gao J, Lu ZY, Lu L, Dai W, Xu M (2007) Role of c-Fos/JunD in protecting stress-induced cell death. Cell Prolif 40(3):431–444. https://doi.org/10.1111/j.1365-2184.2007.00444.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta (BBA) Rev Cancer 1072(2):129–157. https://doi.org/10.1016/0304-419X(91)90011-9

    Article  CAS  Google Scholar 

  67. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20(19):2390–2400. https://doi.org/10.1038/sj.onc.1204383

    Article  CAS  PubMed  Google Scholar 

  68. Fusakio ME, Willy JA, Wang Y, Mirek ET, Al Baghdadi RJ, Adams CM, Anthony TG, Wek RC (2016) Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver. Mol Biol Cell 27(9):1536–1551. https://doi.org/10.1091/mbc.E16-01-0039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sukumar M, Liu J, Mehta GU, Patel SJ, Roychoudhuri R, Crompton JG, Klebanoff CA, Ji Y, Li P, Yu Z, Whitehill GD, Clever D, Eil RL, Palmer DC, Mitra S, Rao M, Keyvanfar K, Schrump DS, Wang E, Marincola FM, Gattinoni L, Leonard WJ, Muranski P, Finkel T, Restifo NP (2016) Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab 23(1):63–76. https://doi.org/10.1016/j.cmet.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  70. Thevenot PT, Sierra RA, Raber PL, Al-Khami AA, Trillo-Tinoco J, Zarreii P, Ochoa AC, Cui Y, Del Valle L, Rodriguez PC (2014) The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity 41(3):389–401. https://doi.org/10.1016/j.immuni.2014.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, Wang CR, Schumacker PT, Licht JD, Perlman H, Bryce PJ, Chandel NS (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38(2):225–236. https://doi.org/10.1016/j.immuni.2012.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chamoto K, Chowdhury PS, Kumar A, Sonomura K, Matsuda F, Fagarasan S, Honjo T (2017) Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA 114(5):E761-e770. https://doi.org/10.1073/pnas.1620433114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mak TW, Grusdat M, Duncan GS, Dostert C, Nonnenmacher Y, Cox M, Binsfeld C, Hao Z, Brüstle A, Itsumi M, Jäger C, Chen Y, Pinkenburg O, Camara B, Ollert M, Bindslev-Jensen C, Vasiliou V, Gorrini C, Lang PA, Lohoff M, Harris IS, Hiller K, Brenner D (2017) Glutathione primes T cell metabolism for inflammation. Immunity 46(4):675–689. https://doi.org/10.1016/j.immuni.2017.03.019

    Article  CAS  PubMed  Google Scholar 

  74. Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14(5):500–508. https://doi.org/10.1038/ni.2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van der Windt GJ, Pearce EL (2012) Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev 249(1):27–42. https://doi.org/10.1111/j.1600-065X.2012.01150.x

    Article  PubMed  PubMed Central  Google Scholar 

  76. Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM (1843) Sattlegger E (2014) Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta 9:1948–1968. https://doi.org/10.1016/j.bbamcr.2014.04.006

    Article  CAS  Google Scholar 

  77. Van de Velde LA, Guo XJ, Barbaric L, Smith AM, Oguin TH 3rd, Thomas PG, Murray PJ (2016) Stress kinase GCN2 controls the proliferative fitness and trafficking of cytotoxic T cells independent of environmental amino acid sensing. Cell Rep 17(9):2247–2258. https://doi.org/10.1016/j.celrep.2016.10.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wek SA, Zhu S, Wek RC (1995) The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 15(8):4497–4506. https://doi.org/10.1128/mcb.15.8.4497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Investig 117(5):1147–1154. https://doi.org/10.1172/jci31178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Halaby MJ, Hezaveh K, Lamorte S, Ciudad MT, Kloetgen A, MacLeod BL, Guo M, Chakravarthy A, Medina TDS, Ugel S, Tsirigos A, Bronte V, Munn DH, Pugh TJ, De Carvalho DD, Butler MO, Ohashi PS, Brooks DG, McGaha TL (2019) GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment. Sci Immunol. https://doi.org/10.1126/sciimmunol.aax8189

    Article  PubMed  PubMed Central  Google Scholar 

  81. Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, Li WH, Heerding DA, Minthorn E, Mencken T, Atkins C, Liu Q, Rabindran S, Kumar R, Hong X, Goetz A, Stanley T, Taylor JD, Sigethy SD, Tomberlin GH, Hassell AM, Kahler KM, Shewchuk LM, Gampe RT (2012) Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem 55(16):7193–7207. https://doi.org/10.1021/jm300713s

    Article  CAS  PubMed  Google Scholar 

  82. Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K, Stanley TB, Sanders B, Goetz A, Gaul N, Choudhry AE, Alsaid H, Jucker BM, Axten JM, Kumar R (2013) Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 73(6):1993–2002. https://doi.org/10.1158/0008-5472.Can-12-3109

    Article  CAS  PubMed  Google Scholar 

  83. Sidrauski C, McGeachy AM, Ingolia NT, Walter P (2015) The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. Elife. https://doi.org/10.7554/eLife.05033

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zyryanova AF, Weis F, Faille A, Alard AA, Crespillo-Casado A, Sekine Y, Harding HP, Allen F, Parts L, Fromont C, Fischer PM, Warren AJ, Ron D (2018) Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science 359(6383):1533–1536. https://doi.org/10.1126/science.aar5129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Halliday M, Radford H, Sekine Y, Moreno J, Verity N, le Quesne J, Ortori CA, Barrett DA, Fromont C, Fischer PM, Harding HP, Ron D, Mallucci GR (2015) Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis 6(3):e1672–e1672. https://doi.org/10.1038/cddis.2015.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant funds 1R01CA248359-01 to JET, 1R01CA244361-01A1 JET, T32 CA 193201 to AMA, and T32 DE01755 to MDT. We thank Sage Jadrnicek for figure design and artwork.

Funding

1R01CA248359-01 (JET), 1R01CA244361-01A1 (JET), T32 CA 193201 (AMA), T32 DE01755 (MDT).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the manuscript conception, outline, and overall design. AMA reviewed and wrote the first section. MDT reviewed and wrote the second section; JET revised, edited, and formalized the manuscript. All the authors read and approved the final manuscript and agreed that they are accountable for all the aspects of the work and assure the accuracy and integrity of the work.

Corresponding author

Correspondence to Jessica E. Thaxton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, A.M., Tennant, M.D. & Thaxton, J.E. Stress relief for cancer immunotherapy: implications for the ER stress response in tumor immunity. Cancer Immunol Immunother 70, 1165–1175 (2021). https://doi.org/10.1007/s00262-020-02740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02740-3

Keywords

Navigation