Skip to main content

Advertisement

Log in

Predictive value of positron emission tomography for the prognosis of immune checkpoint inhibitors (ICIs) in malignant tumors

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

A Correction to this article was published on 11 March 2020

This article has been updated

Abstract

Purpose

This study aimed at investigating the value of applying positron emission tomography (PET) to early predict the effect of immune checkpoint inhibitors (ICIs) in malignant tumors.

Methods

Electronic databases MEDLINE/PubMed, EMBASE, and Cochrane Library were searched to identify relevant trials. The primary endpoints were progression-free survival (PFS) and overall survival (OS). The results were analyzed utilizing SPSS 19.0 statistical software. Subgroup analyses were implemented based on primary tumors, study designs, continents, type of ICIs, evaluation index of PET, and evaluated PET timing.

Results

Fifteen studies incorporating 664 individuals were eligible. Compared with PET nonresponse group, PET response group displayed a significantly prolonged PFS (HR 0.27, 95% CI [0.16, 0.44]; P < 0.001) and OS (HR 0.56, 95% CI [0.48, 0.65]; P < 0.001). Analogical outcomes were obtained in subgroup analyses of PFS in non-small cell lung cancer, prospective, America, ipilimumab, nivolumab/pembrolizumab combined ipilimumab, PET Response Criteria in Solid Tumors (PERCIST), baseline PET and early PET timing arms without heterogeneity; so did OS in melanoma, retrospective, Europe, America, ipilimumab, nivolumab/pembrolizumab, PERCIST, baseline metabolic tissue volume, baseline standard uptake value, and baseline total lesion glycolysis, baseline PET timing, early PET timing and late PET timing arms.

Conclusion

Our study demonstrated that PET was a promising approach to early predict the prognosis of ICIs for malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 11 March 2020

    The original version of this article unfortunately contained a mistake. The correct information is given in the following.

References

  1. Lheureux S, Denoyelle C, Ohashi PS, De Bono JS, Mottaghy FM (2017) Molecularly targeted therapies in cancer: a guide for the nuclear medicine physician. Eur J Nucl Med Mol Imaging 44:41–54

    Article  CAS  Google Scholar 

  2. Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ et al (2019) Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393(10183):1819–1830

    Article  CAS  Google Scholar 

  3. Cohen EEW, Soulières D, Le Tourneau C, Dinis J, Licitra L, Ahn MJ et al (2019) Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 393(10167):156–167

    Article  CAS  Google Scholar 

  4. Aide N, Hicks RJ, Le Tourneau C, Lheureux S, Fanti S, Lopci E (2019) FDG PET/CT for assessing tumor response to immunotherapy: report on the EANM symposium on immune modulation and recent review of the literature. Eur J Nucl Med Mol Imaging 46(1):238–250

    Article  Google Scholar 

  5. Perng P, Marcus C, Subramaniam RM (2015) (18)F-FDG PET/CT and melanoma: staging, immune modulation and mutation-targeted therapy assessment, and prognosis. AJR Am J Roentgenol 205(2):259–270

    Article  Google Scholar 

  6. Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S et al (2017) Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 23(8):1920–1928

    Article  CAS  Google Scholar 

  7. Saada-Bouzid E, Defaucheux C, Karabajakian A, Coloma VP, Servois V, Paoletti X et al (2017) Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol 28(7):1605–1611

    Article  CAS  Google Scholar 

  8. Sohn HJ, Yang YJ, Ryu JS, Oh SJ, Im KC, Moon DH et al (2008) 18F-Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res 14(22):7423–7429

    Article  CAS  Google Scholar 

  9. Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ (2010) Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 9:906–920

    Article  Google Scholar 

  10. Smits A, Baumert BG (2011) The clinical value of PET with amino acid tracers for gliomas WHO grade II. Int J Mol Imaging 2011:372509

    Article  Google Scholar 

  11. Zhu Y, Lu J, Wei X, Song S, Huang G (2013) The predictive value of interim and final [18F] fluorodeoxyglucose positron emission tomography after rituximab-chemotherapy in the treatment of non-Hodgkin’s lymphoma: a meta-analysis. Biomed Res Int 2013:27580

    Google Scholar 

  12. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  CAS  Google Scholar 

  13. Padhani AR, Ollivier L (2001) The RECIST (Response Evaluation Criteria in Solid Tumors) criteria: implications for diagnostic radiologists. Br J Radiol 74(887):983–986

    Article  CAS  Google Scholar 

  14. Xie X, Chen H, Yang H, Lin H, Zhou S, Shen R et al (2018) Predictive value of positron emission tomography for the prognosis of molecularly targeted therapy in solid tumors. OncoTargets Ther 11:8885–8899

    Article  CAS  Google Scholar 

  15. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Open Med 3(3):e123–e130

    PubMed  PubMed Central  Google Scholar 

  16. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16

    Article  Google Scholar 

  17. Parmar MK, Torri V, Stewart L (1998) Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 17(24):2815–2834

    Article  CAS  Google Scholar 

  18. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    Article  Google Scholar 

  19. Ito K, Schöder H, Teng R, Humm JL, Ni A, Wolchok JD, Weber WA (2019) Prognostic value of baseline metabolic tumor volume measured on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography in melanoma patients treated with ipilimumab therapy. Eur J Nucl Med Mol Imaging 46(4):930–939

    Article  CAS  Google Scholar 

  20. Sachpekidis C, Kopp-Schneider A, Hakim-Meibodi L, Dimitrakopoulou-Strauss A, Hassel JC (2019) 18 F-FDG PET/CT longitudinal studies in patients with advanced metastatic melanoma for response evaluation of combination treatment with vemurafenib and ipilimumab. Melanoma Res 29(2):178–186

    Article  CAS  Google Scholar 

  21. Castello A, Grizzi F, Qehajaj D, Rahal D, Lutman F, Lopci E (2019) 18 F-FDG PET/CT for response assessment in Hodgkin lymphoma undergoing immunotherapy with checkpoint inhibitors. Leuk Lymphoma 60(2):367–375

    Article  CAS  Google Scholar 

  22. Sanli Y, Leake J, Odu A, Xi Y, Subramaniam RM (2019) Tumor heterogeneity on FDG PET/CT and immunotherapy: an imaging biomarker for predicting treatment response in patients with metastatic melanoma. AJR AM J Roentgenol 1:1–9

    Google Scholar 

  23. Ito K, Teng R, Schöder H, Humm JL, Ni A, Michaud L et al (2019) F-FDG PET/CT for monitoring of ipilimumab therapy in patients with metastatic melanoma. J Nucl Med 60(3):335–341

    Article  CAS  Google Scholar 

  24. Beer L, Hochmair M, Haug AR, Schwabel B, Kifjak D, Wadsak W et al (2019) Comparison of RECIST, iRECIST, and PERCIST for the evaluation of response to PD-1/PD-L1 blockade therapy in patients with non-small cell lung cancer. Clin Nucl Med 44(7):535–543

    Article  Google Scholar 

  25. Kaira K, Higuchi T, Naruse I, Arisaka Y, Tokue A, Altan B et al (2018) Metabolic activity by F-FDG-PET/CT is predictive of early response after nivolumab in previously treated NSCLC. Eur J Nucl Med Mol Imaging 45(1):56–66

    Article  CAS  Google Scholar 

  26. Ichiki Y, Taira A, Chikaishi Y, Matsumiya H, Mori M, Kanayama M et al (2019) Prognostic factors of advanced or postoperative recurrent non-small cell lung cancer targeted with immune check point inhibitors. J Thorac Dis 11(4):1117–1123

    Article  Google Scholar 

  27. Goldfarb L, Duchemann B, Chouahnia K, Zelek L, Soussan M (2019) Monitoring anti-PD-1-based immunotherapy in non-small cell lung cancer with FDG PET: introduction of iPERCIST. EJNMMI Res 9(1):8

    Article  Google Scholar 

  28. Tan AC, Emmett L, Lo S, Liu V, Kapoor R, Carlino MS et al (2018) FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma. Ann Oncol 29(10):2115–2120

    Article  CAS  Google Scholar 

  29. Seith F, Forschner A, Schmidt H, Pfannenberg C, Gückel B, Nikolaou K et al (2018) 18F-FDG-PET detects complete response to PD1-therapy in melanoma patients two weeks after therapy start. Eur J Nucl Med Mol Imaging 45(1):95–101

    Article  CAS  Google Scholar 

  30. Sachpekidis C, Larribere L, Pan L, Haberkorn U, Dimitrakopoulou-Strauss A, Hassel JC (2015) Predictive value of early 18 F-FDG PET/CT studies for treatment response evaluation to ipilimumab in metastatic melanoma: preliminary results of an ongoing study. Eur J Nucl Med Mol Imaging 42(3):386–396

    Article  CAS  Google Scholar 

  31. Amrane K, Le Goupil D, Quere G, Delcroix O, Gouva S, Schick U et al (2019) Prediction of response to immune checkpoint inhibitor therapy using 18F-FDG PET/CT in patients with melanoma. Medicine (Baltimore) 98(29):e16417

    Article  CAS  Google Scholar 

  32. Meerwein CM, Hüllner M, Braun R, Soyka MB, Morand GB, Holzmann D (2019) Current concepts in advanced sinonasal mucosal melanoma: a single institution experience. Eur Arch Otorhinolaryngol 276(8):2259–2265

    Article  Google Scholar 

  33. Seban RD, Nemer JS, Marabelle A, Yeh R, Deutsch E, Ammari S et al (2019) Prognostic and theranostic 18F-FDG PET biomarkers for anti-PD1 immunotherapy in metastatic melanoma: association with outcome and transcriptomics. Eur J Nucl Med Mol Imaging 46(11):2298–2310

    Article  CAS  Google Scholar 

  34. Kwak JJ, Tirumani SH, Van den Abbeele AD, Koo PJ, Jacene HA (2015) Cancer immunotherapy: imaging assessment of novel treatment response patterns and immune-related adverse events. Radiographics 35(2):424–437

    Article  Google Scholar 

  35. Nishino M, Tirumani SH, Ramaiya NH, Hodi FS (2015) Cancer immunotherapy and immune-related response assessment: the role of radiologists in the new arena of cancer treatment. Eur J Radiol 84(7):1259–1268

    Article  Google Scholar 

  36. Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W et al (2015) Immunotherapy response assessment in neuro-oncology: a report of the RANO Working Group. Lancet Oncol 16(15):e534–e542

    Article  Google Scholar 

  37. Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbé C et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420

    Article  CAS  Google Scholar 

  38. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA et al (1999) Measurement of clinical and subclinical tumor response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35(13):1773–1782

    Article  CAS  Google Scholar 

  39. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl1):122S–150S

    Article  CAS  Google Scholar 

  40. Desar IM, van Herpen CM, van Laarhoven HW, Barentsz JO, Oyen WJ, van der Graaf WT (2009) Beyond RECIST: molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat Rev 35(4):309–321

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Fujian Province (2019J01457).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by QW, JL, YZ, SW, and XX. The first draft of the manuscript was written by QW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xianhe Xie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Liu, J., Zhang, Y. et al. Predictive value of positron emission tomography for the prognosis of immune checkpoint inhibitors (ICIs) in malignant tumors. Cancer Immunol Immunother 69, 927–936 (2020). https://doi.org/10.1007/s00262-020-02515-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02515-w

Keywords

Navigation