Skip to main content

Advertisement

Log in

Chemotherapy markedly reduces B cells but not T cells and NK cells in patients with cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Chemotherapy is still the backbone of systemic treatment in the majority of cancers. However, immunotherapies, especially those based on checkpoint inhibition, are additional therapy options for many. For this, functional T cells are a mandatory requirement. The aim of this prospective study was to investigate the influence of chemotherapy on the cellular immune status of individual patients. Peripheral blood samples of 26 patients with solid malignancies undergoing chemotherapy were analyzed for lymphocyte populations and their subsets in a longitudinal approach. Chemotherapy decreased total B lymphocyte counts [median value (25–75 percentile): before chemotherapy 76/µl (39–160) vs. after chemotherapy 49/µl (24–106); p = 0.001]. Among B cells, specific subsets decreased particularly [naïve B cells (49/µl (21–111) vs. 25/µl (13–56); p = 0.001], memory B cells [3/µl (2–8) vs. 2/µl (1–4); p = 0.001], and class-switched B cells [11/µl (6–20) vs. 6/µl (3–12); p = 0.011]. In contrast, chemotherapy had no influence on the total numbers of CD4 + and CD8 + T lymphocytes or on their subsets (T helper cells 1, 2, and 17 as well as cytotoxic T cells in early, intermediate, late, terminal effector and exhausted status as well as both T-cell types with naïve, center memory, effector memory, activated, or regulatory phenotype). Furthermore, the count of natural killer (NK) lymphocytes showed no significant change before and after chemotherapy. In summary, this study shows a decrease of B lymphocytes during systemic chemotherapy, but no relevant effect on T lymphocytes, NK lymphocytes and their subsets. This could support the idea of an effective additive T-cell-dependent immunotherapy to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CD:

Cluster of differentiation

CR:

Complete remission

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

ECD:

Phycoerythrin texas red-X

EDTA:

Ethylenediaminetetraacetic acid

FITC:

Fluoreszeinisothiocyanat

FOLFIRI:

Folinic acid, fluorouracil, irinotecan

FOLFIRINOX:

Folinic acid, fluorouracil, irinotecan, oxaliplatin

G-CSF:

Granulocyte-colony stimulating factor

ICD:

Immunogenic cell death

NSCLC:

Non-small cell lung cancer

PC:

Phycoerythrin–cyanin

PD:

Progressive disease

PD-1:

Programmed cell death protein 1

PE:

Phycoerythrin

PR:

Partial remission

SCLC:

Small cell lung cancer

SD:

Stable disease

References

  1. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213. https://doi.org/10.1056/NEJMoa020177

    Article  CAS  PubMed  Google Scholar 

  2. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666. https://doi.org/10.1056/NEJMoa051424

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68(13):5405–5413. https://doi.org/10.1158/0008-5472.Can-07-5206

    Article  CAS  PubMed  Google Scholar 

  4. Streitz M, Miloud T, Kapinsky M, Reed MR, Magari R, Geissler EK et al (2013) Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transpl Res 2(1):17. https://doi.org/10.1186/2047-1440-2-17

    Article  CAS  Google Scholar 

  5. van Gent R, van Tilburg CM, Nibbelke EE, Otto SA, Gaiser JF, Janssens-Korpela PL et al (2009) Refined characterization and reference values of the pediatric T- and B-cell compartments. Clin Immunol Orlando Fla). 133(1):95–107. https://doi.org/10.1016/j.clim.2009.05.020

    Article  CAS  Google Scholar 

  6. Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y et al (2016) Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium. Sci Rep 6:20686. https://doi.org/10.1038/srep20686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Tilburg CM, van Gent R, Bierings MB, Otto SA, Sanders EA, Nibbelke EE et al (2011) Immune reconstitution in children following chemotherapy for haematological malignancies: a long-term follow-up. Br J Haematol 152(2):201–210. https://doi.org/10.1111/j.1365-2141.2010.08478.x

    Article  PubMed  Google Scholar 

  8. Flammiger A, Bayer F, Cirugeda-Kuhnert A, Huland H, Tennstedt P, Simon R et al (2012) Intratumoral T but not B lymphocytes are related to clinical outcome in prostate cancer. APMIS 120(11):901–908. https://doi.org/10.1111/j.1600-0463.2012.02924.x

    Article  CAS  PubMed  Google Scholar 

  9. Mei Z, Liu Y, Liu C, Cui A, Liang Z, Wang G et al (2014) Tumour-infiltrating inflammation and prognosis in colorectal cancer: systematic review and meta-analysis. Br J Cancer 110(6):1595–1605. https://doi.org/10.1038/bjc.2014.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DiLillo DJ, Yanaba K, Tedder TF (2010) B cells are required for optimal CD4 + and CD8 + T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J Immunol (Baltimore, Md: 1950) 184(7):4006–4016. https://doi.org/10.4049/jimmunol.0903009

    Article  CAS  Google Scholar 

  11. Li Q, Teitz-Tennenbaum S, Donald EJ, Li M, Chang AE (2009) In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy. J Immunol (Baltimore, Md: 1950). 183(5):3195–3203. https://doi.org/10.4049/jimmunol.0803773

    Article  CAS  PubMed Central  Google Scholar 

  12. Yuen GJ, Demissie E, Pillai S (2016) B lymphocytes and cancer: a love-hate relationship. Trends Cancer 2(12):747–757. https://doi.org/10.1016/j.trecan.2016.10.010

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chin Y, Janseens J, Vandepitte J, Vandenbrande J, Opdebeek L, Raus J (1992) Phenotypic analysis of tumor-infiltrating lymphocytes from human breast cancer. Anticancer Res 12(5):1463–1466

    CAS  PubMed  Google Scholar 

  14. Coronella-Wood JA, Hersh EM (2003) Naturally occurring B-cell responses to breast cancer. Cancer Immunol Immunother 52(12):715–738. https://doi.org/10.1007/s00262-003-0409-4

    Article  PubMed  Google Scholar 

  15. Marsigliante S, Biscozzo L, Marra A, Nicolardi G, Leo G, Lobreglio GB et al (1999) Computerised counting of tumour infiltrating lymphocytes in 90 breast cancer specimens. Cancer Lett 139(1):33–41

    Article  CAS  Google Scholar 

  16. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE (2005) Identification and characterization of circulating human transitional B cells. Blood 105(11):4390–4398. https://doi.org/10.1182/blood-2004-11-4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT et al (2012) Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 72(5):1070–1080. https://doi.org/10.1158/0008-5472.Can-11-3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nedergaard BS, Ladekarl M, Nyengaard JR, Nielsen K (2008) A comparative study of the cellular immune response in patients with stage IB cervical squamous cell carcinoma Low numbers of several immune cell subtypes are strongly associated with relapse of disease within 5 years. Gynecol Oncol 108(1):106–111. https://doi.org/10.1016/j.ygyno.2007.08.089

    Article  CAS  PubMed  Google Scholar 

  19. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14(16):5220–5227. https://doi.org/10.1158/1078-0432.Ccr-08-0133

    Article  CAS  PubMed  Google Scholar 

  20. Rovati B, Mariucci S, Poma R, Tinelli C, Delfanti S, Pedrazzoli P (2014) An eight-colour flow cytometric method for the detection of reference values of lymphocyte subsets in selected healthy donors. Clin Exp Med 14(3):249–259. https://doi.org/10.1007/s10238-013-0239-4

    Article  CAS  PubMed  Google Scholar 

  21. Wichmann MW, Muller C, Meyer G, Adam M, Angele MK, Eisenmenger SJ et al (2003) Different immune responses to abdominal surgery in men and women. Langenbeck’s Arch Surg 387(11–12):397–401. https://doi.org/10.1007/s00423-002-0346-2

    Article  Google Scholar 

  22. Li W, Lam MS, Birkeland A, Riffel A, Montana L, Sullivan ME et al (2006) Cell-based assays for profiling activity and safety properties of cancer drugs. J Pharmacol Toxicol Methods 54(3):313–319. https://doi.org/10.1016/j.vascn.2006.02.014

    Article  CAS  PubMed  Google Scholar 

  23. Diederich M (2019) Natural compound inducers of immunogenic cell death. Arch Pharmacal Res. https://doi.org/10.1007/s12272-019-01150-z

    Article  Google Scholar 

  24. Eyrich M, Wiegering V, Lim A, Schrauder A, Winkler B, Schlegel PG (2009) Immune function in children under chemotherapy for standard risk acute lymphoblastic leukaemia—a prospective study of 20 paediatric patients. Br J Haematol 147(3):360–370. https://doi.org/10.1111/j.1365-2141.2009.07862.x

    Article  CAS  PubMed  Google Scholar 

  25. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM et al (1995) Age, thymopoiesis, and CD4 + T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 332(3):143–149. https://doi.org/10.1056/nejm199501193320303

    Article  CAS  PubMed  Google Scholar 

  26. Weinberg K, Annett G, Kashyap A, Lenarsky C, Forman SJ, Parkman R (1995) The effect of thymic function on immunocompetence following bone marrow transplantation. Biol Blood Marrow Transpl 1(1):18–23

    CAS  Google Scholar 

  27. Lin JC, Shih YL, Chien PJ, Liu CL, Lee JJ, Liu TP et al (2010) Increased percentage of B cells in patients with more advanced hepatocellular carcinoma. Hum Immunol 71(1):58–62. https://doi.org/10.1016/j.humimm.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  28. Spacek J, Vocka M, Netikova I, Skalova H, Dundr P, Konopasek B et al (2018) Immunological examination of peripheral blood in patients with colorectal cancer compared to healthy controls. Immunol Invest 47(7):643–653. https://doi.org/10.1080/08820139.2018.1480030

    Article  CAS  PubMed  Google Scholar 

  29. Wang WJ, Tao Z, Gu W, Sun LH (2013) Variation of blood T lymphocyte subgroups in patients with non- small cell lung cancer. Asian Pacific J Cancer Prevention 14(8):4671–4673

    Article  Google Scholar 

  30. Choi J, Maeng HG, Lee SJ, Kim YJ, Kim DW, Lee HN et al (2018) Diagnostic value of peripheral blood immune profiling in colorectal cancer. Ann Surg Treat Res 94(6):312–321. https://doi.org/10.4174/astr.2018.94.6.312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 39(1):98–106. https://doi.org/10.1097/coc.0000000000000239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grace JY (2016) B lymphocytes and cancer: a love-hate relationship. Trends Cancer. 747–757

  33. Fessas P, Lee H, Ikemizu S, Janowitz T (2017) A molecular and preclinical comparison of the PD-1-targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab. Semin Oncol 44(2):136–140. https://doi.org/10.1053/j.seminoncol.2017.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jahrestagung der Deutschen, Österreichischen und Schweizerischen Gesellschaften für Hämatologie und Medizinische Onkologie, October 11th–14th 2019, Berlin, Germany. Oncol Res Treat 42(suppl 4):XIV + 346 (2019) (Abstract)

Download references

Acknowledgements

We would like to thank Gernot Müller, Professor for computational statistics and data analysis, University of Augsburg, for his statistical support, Prof. Bruno Märkl, director of the Institute of Pathology and Molecular Diagnostics, University Medical Center Augsburg, for his help with data interpretation, and Mrs. Tatajana Lensjaka on behalf of all laboratory staff for the technical support in our laboratory.

Funding

No relevant funding.

Author information

Authors and Affiliations

Authors

Contributions

JW: study design, data acquisition and interpretation, and manuscript drafting. AS: data acquisition and interpretation. MT: manuscript drafting. A-KS: manuscript drafting. AR: study design, data acquisition, and interpretation, manuscript drafting

Corresponding author

Correspondence to Johanna Waidhauser.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

The study was approved by the local medical ethical committee (institutional review board, reference number BKF 2016/09) and written informed consent was obtained. All procedures involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Patients and healthy blood donors consented to the use of their blood samples and data for research and publications.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waidhauser, J., Schuh, A., Trepel, M. et al. Chemotherapy markedly reduces B cells but not T cells and NK cells in patients with cancer. Cancer Immunol Immunother 69, 147–157 (2020). https://doi.org/10.1007/s00262-019-02449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02449-y

Keywords

Navigation