Skip to main content
Log in

Melanoma-conditioned medium promotes cytotoxic immune responses by murine bone marrow-derived monocytes despite their expression of ‘M2’ markers

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Macrophages have been shown to infiltrate a wide range of malignancies and are often considered to promote tumour survival, growth and spread. However, the source and behaviour of discrete tumour-associated macrophage populations are still poorly understood. Here we show a novel method for the rational development of bone marrow-derived monocytes appropriate for the study of processes which involve the contribution of circulating inflammatory monocytes. We have shown that in response to tumour-conditioned medium, these cells upregulate CD206 and CD115, markers traditionally associated with M2-type macrophages. Treated cells show reduced capacity for cytokine secretion but significantly impact CD4+ and CD8+ T-cell proliferation and polarization. Coculture with conditioned bone marrow-derived monocytes significantly reduced CD4+ T-cell proliferation but increased CD8+ T-cell proliferation and granzyme B expression with significant induction of IFNγ secretion by both CD4+ and CD8+ T cells, indicating that these cells may have a role in promoting anti-cancer immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

B16CM:

B16F10-conditioned medium

BMDM:

Bone marrow-derived monocytes

iNOS:

Inducible nitric oxide synthase

mRPMI:

Macrophage RPMI-1640

NTCM:

No treatment concentrated medium

RANTES:

Regulated on activation, normal T cell expressed and secreted

RBC:

Red blood cell

TAM:

Tumour-associated macrophage

References

  1. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. https://doi.org/10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mills CD (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32(6):463–488

    Article  CAS  PubMed  Google Scholar 

  3. Tremble LF, Forde PF (2017) Clinical evaluation of macrophages in cancer: role in treatment, modulation and challenges. Cancer Immunol Immunother 66(12):1509–1527. https://doi.org/10.1007/s00262-017-2065-0

    Article  CAS  PubMed  Google Scholar 

  4. Lee CM, Hu J (2013) Cell density during differentiation can alter the phenotype of bone marrow-derived macrophages. Cell Biosci 3:30. https://doi.org/10.1186/2045-3701-3-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rostam HM, Singh S, Salazar F, Magennis P, Hook A, Singh T, Vrana NE, Alexander MR, Ghaemmaghami AM (2016) The impact of surface chemistry modification on macrophage polarisation. Immunobiology 221(11):1237–1246. https://doi.org/10.1016/j.imbio.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  6. Shima M, Teitelbaum SL, Holers VM, Ruzicka C, Osmack P, Ross FP (1995) Macrophage-colony-stimulating factor regulates expression of the integrins alpha 4 beta 1 and alpha 5 beta 1 by murine bone marrow macrophages. Proc Natl Acad Sci USA 92(11):5179–5183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  CAS  PubMed  Google Scholar 

  8. Yang J, Zhang L, Yu C, Yang X-F, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2(1):1. https://doi.org/10.1186/2050-7771-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zheng J, Yang M, Shao J, Miao Y, Han J, Du J (2013) Chemokine receptor CX3CR9 contributes to macrophage survival in tumor metastasis. Mol Cancer 12(1):141. https://doi.org/10.1186/1476-4598-12-141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Richards DM, Hettinger J, Feuerer M (2012) Monocytes and macrophages in cancer: development and functions. Cancer Microenviron 6(2):179–191. https://doi.org/10.1007/s12307-012-0123-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haanen JBAG (2013) Immunotherapy of melanoma. EJC Suppl 11(2):97–105. https://doi.org/10.1016/j.ejcsup.2013.07.013

    Article  PubMed  PubMed Central  Google Scholar 

  12. Flecknell P (2002) Replacement, reduction and refinement. Altex 19(2):73–78

    PubMed  Google Scholar 

  13. Flesch IE, Kaufmann SH (1999) Effect of fetal calf serum on cytokine release by bone marrow-derived macrophages during infection with intracellular bacteria. Immunobiology 200(1):120–127. https://doi.org/10.1016/s0171-2985(99)80037-0

    Article  CAS  PubMed  Google Scholar 

  14. Bertani FR, Mozetic P, Fioramonti M, Iuliani M, Ribelli G, Pantano F, Santini D, Tonini G, Trombetta M, Businaro L, Selci S, Rainer A (2017) Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci Rep 7(1):8965. https://doi.org/10.1038/s41598-017-08121-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saha B, Bruneau JC, Kodys K, Szabo G (2015) Alcohol-induced miR-27a regulates differentiation and M2 macrophage polarization of normal human monocytes. J Immunol 194(7):3079–3087. https://doi.org/10.4049/jimmunol.1402190

    Article  CAS  PubMed  Google Scholar 

  16. Soncin I, Sheng J, Chen Q, Foo S, Duan K, Lum J, Poidinger M (2018) The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat Commun 9(1):582. https://doi.org/10.1038/s41467-018-02834-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schlecker E, Stojanovic A, Eisen C, Quack C, Falk CS, Umansky V, Cerwenka A (2012) Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR17-dependent recruitment of regulatory T cells favoring tumor growth. J Immunol 189(12):5602–5611. https://doi.org/10.4049/jimmunol.1201018

    Article  CAS  PubMed  Google Scholar 

  18. Grossman JG, Nywening TM, Belt BA, Panni RZ, Krasnick BA, DeNardo DG, Hawkins WG, Goedegebuure SP, Linehan DC, Fields RC (2018) Recruitment of CCR18(+) tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. Oncoimmunology 7(9):e1470729. https://doi.org/10.1080/2162402x.2018.1470729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun LX, Li WD, Lin ZB, Duan XS, Xing EH, Jiang MM, Yang N, Qi HH, Sun Y, Li M, Niu YD, Lu J (2015) Cytokine production suppression by culture supernatant of B16F10 cells and amelioration by Ganoderma lucidum polysaccharides in activated lymphocytes. Cell Tissue Res 360(2):379–389. https://doi.org/10.1007/s00441-014-2083-6

    Article  CAS  PubMed  Google Scholar 

  20. Bardi GT, Smith MA, Hood JL (2018) Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine 105:63–72. https://doi.org/10.1016/j.cyto.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, Wang H, Fang R, Bu X, Cai S, Du J (2016) TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7(32):52294–52306. https://doi.org/10.18632/oncotarget.10561

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wan YY, Flavell RA (2008) TGF-beta and regulatory T cell in immunity and autoimmunity. J Clin Immunol 28(6):647–659. https://doi.org/10.1007/s10875-008-9251-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777. https://doi.org/10.4049/jimmunol.180.9.5771

    Article  CAS  PubMed  Google Scholar 

  24. Maybruck BT, Pfannenstiel LW, Diaz-Montero M, Gastman BR (2017) Tumor-derived exosomes induce CD8(+) T cell suppressors. J Immunother Cancer 5(1):65. https://doi.org/10.1186/s40425-017-0269-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Klarquist J, Tobin K, Farhangi Oskuei P, Henning SW, Fernandez MF, Dellacecca ER, Navarro FC, Eby JM, Chatterjee S, Mehrotra S, Clark JI, Le Poole IC (2016) Ccl22 diverts T regulatory cells and controls the growth of melanoma. Cancer Res 76(21):6230–6240. https://doi.org/10.1158/0008-5472.CAN-16-0618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen M-L, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, Khazaie K (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 102(2):419–424. https://doi.org/10.1073/pnas.0408197102

    Article  CAS  PubMed  Google Scholar 

  27. Jiang H, Gebhardt C, Umansky L, Beckhove P, Schulze TJ, Utikal J, Umansky V (2015) Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int J Cancer 136(10):2352–2360. https://doi.org/10.1002/ijc.29297

    Article  CAS  PubMed  Google Scholar 

  28. Gerber AL, Munst A, Schlapbach C, Shafighi M, Kiermeir D, Husler R, Hunger RE (2014) High expression of FOXP3 in primary melanoma is associated with tumour progression. Br J Dermatol 170(1):103–109. https://doi.org/10.1111/bjd.12641

    Article  CAS  PubMed  Google Scholar 

  29. Baumgartner JM, Gonzalez R, Lewis KD, Robinson WA, Richter DA, Palmer BE, Wilson CC, McCarter MD (2009) Increased survival from stage IV melanoma associated with fewer regulatory T Cells. J Surg Res 154(1):13–20. https://doi.org/10.1016/j.jss.2008.04.043

    Article  CAS  PubMed  Google Scholar 

  30. Tucci M, Mannavola F, Passarelli A, Stucci LS, Cives M, Silvestris F (2018) Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity. Oncotarget 9(29):20826–20837. https://doi.org/10.18632/oncotarget.24846

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bland CL, Byrne-Hoffman CN, Fernandez A, Rellick SL, Deng W, Klinke DJ 2nd (2018) Exosomes derived from B16F0 melanoma cells alter the transcriptome of cytotoxic T cells that impacts mitochondrial respiration. FEBS J 285(6):1033–1050. https://doi.org/10.1111/febs.14396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang L, Tao L, Shi T, Zhang F, Sheng X, Cao Y, Zheng S, Wang A, Qian W, Jiang L, Lu Y (2015) Paeonol inhibits B16F10 melanoma metastasis in vitro and in vivo via disrupting proinflammatory cytokines-mediated NF-κB and STAT3 pathways. IUBMB Life 67(10):778–788. https://doi.org/10.1002/iub.1435

    Article  CAS  PubMed  Google Scholar 

  33. Kruger-Krasagakes S, Krasagakis K, Garbe C, Diamantstein T (1995) Production of cytokines by human melanoma cells and melanocytes. Recent Results Cancer Res 139:155–168

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We would like to thank Breakthrough Cancer Research who funded this research.

Author information

Authors and Affiliations

Authors

Contributions

LFT: study design, wet lab work and paper writing. ACM and PFF: study design, evaluation of results and paper writing.

Corresponding authors

Correspondence to Liam Friel Tremble or Patrick F. Forde.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

All animal husbandry and experimental procedures were approved and licensed by the Animal Experimentation Ethics Committee (AEEC) in University College Cork under licence 2012-047 and performed according to the Irish Cruelty to Animals Act, 1876.

Animal source

All animals were purchased from Envigo in the UK.

Cell line authentication

The B16F10 cell line was purchased from and authenticated by the Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis Tumor Repository.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tremble, L.F., Moore, A.C. & Forde, P.F. Melanoma-conditioned medium promotes cytotoxic immune responses by murine bone marrow-derived monocytes despite their expression of ‘M2’ markers. Cancer Immunol Immunother 68, 1455–1465 (2019). https://doi.org/10.1007/s00262-019-02381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02381-1

Keywords

Navigation