Skip to main content

Advertisement

Log in

Combined treatment with ipilimumab and intratumoral interleukin-2 in pretreated patients with stage IV melanoma—safety and efficacy in a phase II study

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Treatment of advanced melanoma patients with ipilimumab results in improved survival. However, only about 20% of treated patients experience long-term benefit. Combining treatment of ipilimumab with other drugs may improve immune activation and potentially enhance clinical efficacy. The aims of the phase II clinical trial reported here were to investigate tolerability and efficacy of a combined immunotherapeutic strategy comprising standard systemic ipilimumab at 3 mg/kg four times at 3-week intervals and intratumorally injected IL-2 at 9 MIU daily twice weekly for four weeks in pretreated melanoma patients with distant metastasis. The primary endpoint was the disease control rate according to immune-related response criteria at week 12; tolerability according to Common Terminology Criteria for Adverse Events criteria was secondary endpoint. No objective responses were observed in the 15 enrolled patients. Three patients had stable disease 12 weeks after starting treatment, yielding a disease control rate of 20%. Tolerability of this combination treatment was acceptable. Observed adverse events were those expected from the respective monotherapies. Autoimmune colitis was observed in two patients. Grade III/IV adverse events were observed in 40% of patients, and no treatment-related deaths occurred. Thus, this combined immunotherapy is associated with adverse events similar to those associated with the respective monotherapies. However, this study does not provide any evidence of improved efficacy of the combination over ipilimumab alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AEC:

Absolute eosinophil counts

AJCC:

American Joint Committee on Cancer

CR:

Complete response

irDCR:

Immune-related disease control rate

irRC:

Immune-related response criteria

MIU:

Million international units

mWHO:

Modified World Health Organization

PR:

Partial responses

RLC:

Relative lymphocyte counts

SD:

Stable disease

Tregs:

Regulatory T cells

T-VEC:

Talimogene laherparepvec

References

  1. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17(7):2105–2116

    Article  CAS  PubMed  Google Scholar 

  2. Vlasveld LT, Horenblas S, Hekman A, Hilton AM, Dubbelman AC, Melief CJ et al (1994) Phase II study of intermittent continuous infusion of low-dose recombinant interleukin-2 in advanced melanoma and renal cell cancer. Ann Oncol 5(2):179–181

    Article  CAS  PubMed  Google Scholar 

  3. Hauschild A, Weichenthal M, Balda BR, Becker JC, Wolff HH, Tilgen W et al (2003) Prospective randomized trial of interferon alfa-2b and interleukin-2 as adjuvant treatment for resected intermediate- and high-risk primary melanoma without clinically detectable node metastasis. J Clin Oncol 21(15):2883–2888

    Article  CAS  PubMed  Google Scholar 

  4. Radny P, Caroli UM, Bauer J, Paul T, Schlegel C, Eigentler TK et al (2003) Phase II trial of intralesional therapy with interleukin-2 in soft-tissue melanoma metastases. Br J Cancer 89(9):1620–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weide B, Derhovanessian E, Pflugfelder A, Eigentler TK, Radny P, Zelba H et al (2010) High response rate after intratumoral treatment with interleukin-2: results from a phase 2 study in 51 patients with metastasized melanoma. Cancer 116(17):4139–4146

    Article  CAS  PubMed  Google Scholar 

  6. Maas RA, Van Weering DH, Dullens HF, Den Otter W (1991) Intratumoral low-dose interleukin-2 induces rejection of distant solid tumour. Cancer Immunol Immunother 33(6):389–394

    Article  CAS  PubMed  Google Scholar 

  7. Van Es RJ, Baselmans AH, Koten JW, Van Dijk JE, Koole R, Den Otter W (2000) Perilesional IL-2 treatment of a VX2 head-and-neck cancer model can induce a systemic anti-tumour activity. Anticancer Res 20(6B):4163–4170

    PubMed  Google Scholar 

  8. Weide B, Eigentler TK, Pflugfelder A, Leiter U, Meier F, Bauer J et al (2011) Survival after intratumoral interleukin-2 treatment of 72 melanoma patients and response upon the first chemotherapy during follow-up. Cancer Immunol Immunother 60(4):487–493

    Article  CAS  PubMed  Google Scholar 

  9. Weide B, Eigentler TK, Pflugfelder A, Zelba H, Martens A, Pawelec G et al (2014) Intralesional treatment of stage III metastatic melanoma patients with L19-IL2 results in sustained clinical and systemic immunologic responses. Cancer Immunol Res 2(7):668–678

    Article  CAS  PubMed  Google Scholar 

  10. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526

    Article  CAS  PubMed  Google Scholar 

  12. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3(7):611–618

    Article  CAS  PubMed  Google Scholar 

  14. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30(6):899–911

    Article  CAS  PubMed  Google Scholar 

  15. Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B et al (2002) The interaction properties of costimulatory molecules revisited. Immunity 17(2):201–210

    Article  CAS  PubMed  Google Scholar 

  16. Wolchok JD, Saenger Y (2008) The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 13(Suppl 4):2–9

    Article  CAS  PubMed  Google Scholar 

  17. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174(3):561–569

    Article  CAS  PubMed  Google Scholar 

  18. Chambers CA, Kuhns MS, Egen JG, Allison JP (2001) CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19:565–594

    Article  CAS  PubMed  Google Scholar 

  19. Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH (2001) CTLA-4 regulates induction of anergy in vivo. Immunity 14(2):145–155

    Article  CAS  PubMed  Google Scholar 

  20. Sharma P, Wagner K, Wolchok JD, Allison JP (2011) Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11(11):805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martens A, Wistuba-Hamprecht K, Yuan J, Postow MA, Wong P, Capone M et al (2016) Increases in absolute lymphocytes and circulating CD4+ and CD8+ T cells are associated with positive clinical outcome of melanoma patients treated with ipilimumab. Clin Cancer Res 22(19):4848–4858

    Article  CAS  PubMed  Google Scholar 

  22. Kvistborg P, Philips D, Kelderman S, Hageman L, Ottensmeier C, Joseph-Pietras D et al (2014) Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci Transl Med 6(254):254ra128

    Article  PubMed  Google Scholar 

  23. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S et al (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22(4):433–438

    Article  CAS  PubMed  Google Scholar 

  24. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350(6257):207–211

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan J, Ginsberg B, Page D, Li Y, Rasalan T, Gallardo HF et al (2011) CTLA-4 blockade increases antigen-specific CD8(+) T cells in prevaccinated patients with melanoma: three cases. Cancer Immunol Immunother 60(8):1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27(36):6199–6206

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420

    Article  CAS  PubMed  Google Scholar 

  29. Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P et al (2016) Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res 22(12):2908–2918

    Article  CAS  PubMed  Google Scholar 

  30. Kohlhapp FJ, Kaufman HL (2016) Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 22(5):1048–1054

    Article  CAS  PubMed  Google Scholar 

  31. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788

    Article  CAS  PubMed  Google Scholar 

  32. Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol 34(22):2619–2626

    Article  CAS  PubMed  Google Scholar 

  33. Weber JS, Kahler KC, Hauschild A (2012) Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30(21):2691–2697

    Article  CAS  PubMed  Google Scholar 

  34. Maker AV, Phan GQ, Attia P, Yang JC, Sherry RM, Topalian SL et al (2005) Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol 12(12):1005–1016

    Article  PubMed  PubMed Central  Google Scholar 

  35. Baumgartner JM, Gonzalez R, Lewis KD, Robinson WA, Richter DA, Palmer BE et al (2009) Increased survival from stage IV melanoma associated with fewer regulatory T Cells. J Surg Res 154(1):13–20

    Article  CAS  PubMed  Google Scholar 

  36. Weide B, Martens A, Zelba H, Stutz C, Derhovanessian E, Di Giacomo AM et al (2014) Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin Cancer Res 20(6):1601–1609

    Article  CAS  PubMed  Google Scholar 

  37. Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107(6):2409–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364(22):2119–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P et al (2008) CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA 105(39):14987–14992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A et al (2008) Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci USA 105(8):3005–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ribas A, Comin-Anduix B, Economou JS, Donahue TR, de la Rocha P, Morris LF et al (2009) Intratumoral immune cell infiltrates, FoxP3, and indoleamine 2,3-dioxygenase in patients with melanoma undergoing CTLA4 blockade. Clin Cancer Res 15(1):390–399

    Article  CAS  PubMed  Google Scholar 

  42. Gebhardt C, Sevko A, Jiang H, Lichtenberger R, Reith M, Tarnanidis K et al (2015) Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin Cancer Res 21(24):5453–5459

    Article  CAS  PubMed  Google Scholar 

  43. Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K et al (2016) Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res. doi:10.1158/1078-0432.CCR-16-0127

    Google Scholar 

Download references

Acknowledgements

This study was funded by Bristol–Myers–Squibb (Munich, Germany) to B. Weide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Weide.

Ethics declarations

Conflict of interest

B Weide reports receiving commercial research grants from Bristol–Myers Squibb (BMS) and MSD Sharp and Dohme (MSD) and reports receiving travel/accommodations/expenses from BMS, MSD, Roche, Amgen, Philogen, Curevac and compensated advisory services for MSD, BMS, Philogen and Curevac. C. Garbe reports receiving honoraria from BMS, MSD, Amgen, Novartis, Roche, GlaxoSmithKline (GSK) and reports receiving commercial research grants from MSD, BMS, Roche, GSK. T.K Eigentler reports receiving honoraria from BMS, MSD, Roche and Novartis, travel/accommodations/expenses from BMS and is a consultant/advisory board member for BMS. No potential conflicts of interest were disclosed by the other authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weide, B., Martens, A., Wistuba-Hamprecht, K. et al. Combined treatment with ipilimumab and intratumoral interleukin-2 in pretreated patients with stage IV melanoma—safety and efficacy in a phase II study. Cancer Immunol Immunother 66, 441–449 (2017). https://doi.org/10.1007/s00262-016-1944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1944-0

Keywords

Navigation