Skip to main content

Advertisement

Log in

Enhancement of tumor cell susceptibility to natural killer cell activity through inhibition of the PI3K signaling pathway

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells are the primary effectors of the innate immune response against virus-infected cells or cells that have undergone malignant transformation. NK cells recognize their targets through a complex array of activating and inhibitory receptors, which regulate the intensity of the effector response against individual target cells. However, many studies have shown that tumor cells can escape immune cell recognition through a variety of mechanisms, developing resistance to NK cell killing. Using a lentiviral shRNA library, we previously demonstrated that several common signaling pathways modulate susceptibility of tumor cells to NK cell activity. In this study, we focused on one of the genes (PI3KCB), identified in this genetic screen. The PI3KCB gene encodes an isoform of the catalytic subunit of PI3K called P110β. The PI3K pathway has been linked to diverse cellular functions, but has never been associated with susceptibility to NK cell activity. Gene silencing of PI3KCB resulted in increased susceptibility of several tumor cell lines to NK cell lytic activity and induced increased IFN-γ secretion by NK cells. Treatment of primary tumor cells with two different PI3K inhibitors also increased target cell susceptibility to NK cell activity. These effects are due, at least in part, to modulation of several activating and inhibitory ligands and appear to be correlated with PI3K signaling pathway inhibition. These findings identify a new and important role of PI3KCB in modulating tumor cell susceptibility to NK cells and open the way to future combined target immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphocytic leukemia

AML:

Acute myeloid leukemia

CD:

Cluster of differentiation

ET ratio:

Effector to target ratio

IFN:

Interferon

MACS:

Magnetic-activated cell sorting

MFI:

Mean intensity fluorescence

MHC:

Major histocompatibility complex

MICA:

MHC class I polypeptide-related sequence A

MICB:

MHC class I polypeptide-related sequence B

MM:

Multiple myeloma

NK cells:

Natural killer cells

NKL:

Natural killer line

PBMC:

Peripheral blood mononuclear cell

PD-1:

Programmed death 1 receptor

PD-L1:

Programmed death ligand 1

PE:

Phycoerythrin

PI3Ks:

Phosphatidylinositol 3-kinases

RPMI:

Roswell Park Memorial Institute (culture medium)

SDS-PAGE:

Sodium dodecylsulfate polyacrylamide gel electrophoresis

TRAIL:

TNF-related apoptosis-inducing ligand

References

  1. Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9(8):568–580. doi:10.1038/nri2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2(11):850–861. doi:10.1038/nrc928

    Article  CAS  PubMed  Google Scholar 

  3. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49. doi:10.1126/science.1198687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998. doi:10.1038/ni1102-991

    Article  CAS  PubMed  Google Scholar 

  5. Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142(6):847–856. doi:10.1016/j.cell.2010.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50. doi:10.1016/S0065-2776(06)90001-7

    Article  CAS  PubMed  Google Scholar 

  7. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428(6981):431–437. doi:10.1038/nature02371

    Article  CAS  PubMed  Google Scholar 

  8. Root DE, Hacohen N, Hahn WC, Lander ES, Sabatini DM (2006) Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods 3(9):715–719. doi:10.1038/nmeth924

    Article  CAS  PubMed  Google Scholar 

  9. Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR, Sheth N, Bradshaw J, Burchard J, Kulkarni A, Cavet G, Sachidanandam R, McCombie WR, Cleary MA, Elledge SJ, Hannon GJ (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37(11):1281–1288. doi:10.1038/ng1650

    CAS  PubMed  Google Scholar 

  10. Tiedemann RE, Zhu YX, Schmidt J, Yin H, Shi CX, Que Q, Basu G, Azorsa D, Perkins LM, Braggio E, Fonseca R, Bergsagel PL, Mousses S, Stewart AK (2010) Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood 115(8):1594–1604. doi:10.1182/blood-2009-09-243980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, Piqani B, Eisenhaure TM, Luo B, Grenier JK, Carpenter AE, Foo SY, Stewart SA, Stockwell BR, Hacohen N, Hahn WC, Lander ES, Sabatini DM, Root DE (2006) A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124(6):1283–1298. doi:10.1016/j.cell.2006.01.040

    Article  CAS  PubMed  Google Scholar 

  12. Bellucci R, Nguyen HN, Martin A, Heinrichs S, Schinzel AC, Hahn WC, Ritz J (2012) Tyrosine kinase pathways modulate tumor susceptibility to natural killer cells. J Clin Invest 122(7):2369–2383. doi:10.1172/JCI58457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. doi:10.1126/science.296.5573.1655

    Article  CAS  PubMed  Google Scholar 

  14. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619. doi:10.1038/nrg1879

    Article  CAS  PubMed  Google Scholar 

  15. Matheny RW Jr, Adamo ML (2010) PI3K p110 alpha and p110 beta have differential effects on Akt activation and protection against oxidative stress-induced apoptosis in myoblasts. Cell Death Differ 17(4):677–688. doi:10.1038/cdd.2009.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McMullen JR, Jay PY (2007) PI3K(p110alpha) inhibitors as anti-cancer agents: minding the heart. Cell Cycle 6(8):910–913

    Article  CAS  PubMed  Google Scholar 

  17. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510. doi:10.1038/onc.2008.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4(4):257–262

    Article  CAS  PubMed  Google Scholar 

  19. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chene P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, Garcia-Echeverria C (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7(7):1851–1863. doi:10.1158/1535-7163.MCT-08-0017

    Article  CAS  PubMed  Google Scholar 

  20. Maira SM, Stauffer F, Schnell C, Garcia-Echeverria C (2009) PI3K inhibitors for cancer treatment: where do we stand? Biochem Soc Trans 37(Pt 1):265–272. doi:10.1042/BST0370265

    Article  CAS  PubMed  Google Scholar 

  21. Gong JH, Maki G, Klingemann HG (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8(4):652–658

    CAS  PubMed  Google Scholar 

  22. Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J (1996) Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 24(3):406–415

    CAS  PubMed  Google Scholar 

  23. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274. doi:10.1146/annurev.immunol.23.021704.115526

    Article  CAS  PubMed  Google Scholar 

  24. El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW, Cook G, Feyler S, Richards SJ, Davies FE, Morgan GJ, Cook GP (2007) The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67(18):8444–8449. doi:10.1158/0008-5472.CAN-06-4230

    Article  CAS  PubMed  Google Scholar 

  25. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA (2002) Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100(6):1935–1947. doi:10.1182/blood-2002-02-0350

    Article  CAS  PubMed  Google Scholar 

  26. Pietra G, Vitale M, Manzini C, Balsamo M, Moretta L, Mingari MC (2012) Melanoma cells inhibit NK cell functions. Cancer Res 72(20):5430; author reply on comment on “Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity [Cancer Res. 2012]. doi:10.1158/0008-5472

  27. Bunney TD, Katan M (2010) Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer 10(5):342–352. doi:10.1038/nrc2842

    Article  CAS  PubMed  Google Scholar 

  28. Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20(1):87–90. doi:10.1016/j.gde.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maira SM (2011) PI3K inhibitors for cancer treatment: five years of preclinical and clinical research after BEZ235. Mol Cancer Ther 10(11):2016. doi:10.1158/1535-7163.MCT-11-0792

    Article  CAS  PubMed  Google Scholar 

  30. Rodon J, Dienstmann R, Serra V, Tabernero J (2013) Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 10(3):143–153. doi:10.1038/nrclinonc.2013.10

    Article  CAS  PubMed  Google Scholar 

  31. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. doi:10.1038/nrc839

    Article  CAS  PubMed  Google Scholar 

  32. Caligiuri MA (2008) Human natural killer cells. Blood 112(3):461–469. doi:10.1182/blood-2007-09-077438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675. doi:10.1146/annurev.cellbio.17.1.615

    Article  CAS  PubMed  Google Scholar 

  34. Borg C, Terme M, Taieb J, Menard C, Flament C, Robert C, Maruyama K, Wakasugi H, Angevin E, Thielemans K, Le Cesne A, Chung-Scott V, Lazar V, Tchou I, Crepineau F, Lemoine F, Bernard J, Fletcher JA, Turhan A, Blay JY, Spatz A, Emile JF, Heinrich MC, Mecheri S, Tursz T, Zitvogel L (2004) Novel mode of action of c-kit tyrosine kinase inhibitors leading to NK cell-dependent antitumor effects. J Clin Invest 114(3):379–388. doi:10.1172/JCI21102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, Kumar S, Chauhan D, Treon SP, Richardson P, Anderson KC (2005) Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 128(2):192–203. doi:10.1111/j.1365-2141.2004.05286.x

    Article  CAS  PubMed  Google Scholar 

  36. Salih J, Hilpert J, Placke T, Grunebach F, Steinle A, Salih HR, Krusch M (2010) The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer 127(9):2119–2128. doi:10.1002/ijc.25233

    Article  CAS  PubMed  Google Scholar 

  37. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, Ritz J (2015) Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. OncoImmunology 4(6):e1008824. doi:10.1080/2162402x.2015.1008824

    Article  PubMed  PubMed Central  Google Scholar 

  38. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(Pt 1):95–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132. doi:10.1038/nbt1358

    Article  CAS  PubMed  Google Scholar 

  40. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134. doi:10.1056/NEJMoa060655

    Article  CAS  PubMed  Google Scholar 

  41. Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, Booth BP, Verbois SL, Morse DE, Liang CY, Chidambaram N, Jiang JX, Tang S, Mahjoob K, Justice R, Pazdur R (2007) Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res 13(5):1367–1373. doi:10.1158/1078-0432.CCR-06-2328

    Article  CAS  PubMed  Google Scholar 

  42. Hipp MM, Hilf N, Walter S, Werth D, Brauer KM, Radsak MP, Weinschenk T, Singh-Jasuja H, Brossart P (2008) Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111(12):5610–5620. doi:10.1182/blood-2007-02-075945

    Article  CAS  PubMed  Google Scholar 

  43. Krusch M, Salih J, Schlicke M, Baessler T, Kampa KM, Mayer F, Salih HR (2009) The kinase inhibitors sunitinib and sorafenib differentially affect NK cell antitumor reactivity in vitro. J Immunol 183(12):8286–8294. doi:10.4049/jimmunol.0902404

    Article  CAS  PubMed  Google Scholar 

  44. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Schwartz M, Divino CM, Pan PY, Chen SH (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69(6):2514–2522. doi:10.1158/0008-5472.CAN-08-4709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang K, Zhong B, Gilvary DL, Corliss BC, Hong-Geller E, Wei S, Djeu JY (2000) Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat Immunol 1(5):419–425. doi:10.1038/80859

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

R21AI088521 (NIH), Multiple Myeloma Research Foundation (MMRF) and Claudia Adams Barr Research Program (Roberto Bellucci), P01CA078378 (NIH), PO1CA142106 (NIH), CA183560 (NIH) (Jerome Ritz).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jerome Ritz or Roberto Bellucci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bommarito, D., Martin, A., Forcade, E. et al. Enhancement of tumor cell susceptibility to natural killer cell activity through inhibition of the PI3K signaling pathway. Cancer Immunol Immunother 65, 355–366 (2016). https://doi.org/10.1007/s00262-016-1804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1804-y

Keywords

Navigation