Skip to main content

Advertisement

Log in

Increasing radiation dose improves immunotherapy outcome and prolongation of tumor dormancy in a subgroup of mice treated for advanced intracerebral melanoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Previously, we developed a clinically relevant therapy model for advanced intracerebral B16 melanomas in syngeneic mice combining radiation and immunotherapies. Here, 7 days after B16-F10-luc2 melanoma cells were implanted intracerebrally (D7), syngeneic mice with bioluminescent tumors that had formed (1E105 to 7E106 photons per minute (>1E106, large; <1E106, small) were segregated into large-/small-balanced subgroups. Then, mice received either radiation therapy alone (RT) or radiation therapy plus immunotherapy (RT plus IT) (single injection of mAbPC61 to deplete regulatory T cells followed by multiple injections of irradiated granulocyte macrophage colony stimulating factor transfected B16-F10 cells) (RT plus IT). Radiation dose was varied (15, 18.75 or 22.5 Gy, given on D8), while immunotherapy was provided similarly to all mice. The data support the hypothesis that increasing radiation dose improves the outcome of immunotherapy in a subgroup of mice. The tumors that were greatly delayed in beginning their progressive growth were bioluminescent in vivo—some for many months, indicating prolonged tumor “dormancy,” in some cases presaging long-term cures. Mice bearing such tumors had far more likely received radiation plus immunotherapy, rather than RT alone. Radiotherapy is a very important adjunct to immunotherapy; the greater the tumor debulking by RT, the greater should be the benefit to tumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Anti-PD-1:

Anti-programmed cell death protein 1 antibody

C:

Control

CNS:

Central nervous system

D:

Day

DAPI:

4′,6-Diamidino-2-phenylindole

GM-CSF:

Granulocyte macrophage colony stimulating factor

IL:

Interleukin

ip:

Intraperitoneal

IT:

Immunotherapy

kVp:

Peak kilovoltage

mAb:

Monoclonal antibody

MCA:

Methylcholanthrene

MHC:

Major histocompatibility complex

NOD/SCID:

Non-obese diabetic/severe combined immunodeficiency

NT:

No treatment

RT:

Radiation therapy

sc:

Subcutaneous

Tregs:

Regulatory T cells

TTP:

Time to tumor progression

References

  1. Walbert T, Gilbert MR (2009) The role of chemotherapy in the treatment of patients with brain metastases from solid tumors. Int J Clin Oncol 14:299–306. doi:10.1007/s10147-009-0916-1

    Article  CAS  PubMed  Google Scholar 

  2. Langley RR, Fidler IJ (2013) The biology of brain metastasis. Clin Chem 59:180–189. doi:10.1373/clinchem.2012.193342

    Article  CAS  PubMed  Google Scholar 

  3. Smilowitz HM, Sasso D, Lee E, Goh G, Micca PL, Dilmanian FA (2013) Therapy model for advanced intracerebral B16 mouse melanoma using radiation therapy combined with immunotherapy. Cancer Immunol Immunother 62:1187–1197. doi:10.1007/s00262-013-1423-9

    Article  CAS  PubMed  Google Scholar 

  4. Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, Nelson SF, Liau LM (2011) Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res 17:1603–1615. doi:10.1158/1078-0432.CCR-10-2563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang HQ, Nuno MA, Richardson JE, Fan X, Ji J, Chu RM, Bender JG, Hawkins ES, Patil CG, Black KL, Yu JS (2013) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 62:125–135. doi:10.1007/s00262-012-1319-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846. doi:10.1038/nrc2256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ossowski L, Aguirre-Ghiso JA (2009) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23:41–56. doi:10.1111/j.1755-148X.2009.00647.x

    Article  PubMed Central  PubMed  Google Scholar 

  8. Almog N (2010) Molecular mechanisms underlying tumor dormancy. Cancer Lett 294:139–146. doi:10.1016/j.canlet.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  9. Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46:1181–1188. doi:10.1016/j.ejca.2010.02.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Bragado P, Sosa MS, Keely P, Condeelis J, Aguirre-Ghiso JA (2012) Microenvironments dictating tumor dormancy. Recent Results Cancer Res 195:25–39. doi:10.1007/978-3-642-28160-0_3

    Article  PubMed Central  PubMed  Google Scholar 

  11. Rocken M (2010) Early tumor dissemination, but late metastasis: insights into tumor dormancy. J Clin Invest 120:1800–1803. doi:10.1172/JCI43424

    Article  PubMed Central  PubMed  Google Scholar 

  12. Wells A, Griffith L, Wells JZ, Taylor DP (2013) The dormancy dilemma: quiescence versus balanced proliferation. Cancer Res 73:3811–3816. doi:10.1158/0008-5472.CAN-13-0356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Darby S, McGale P, Correa C, Taylor C, Arriagada R, Clarke M, Cutter D, Davies C, Ewertz M, Godwin J, Gray R, Pierce L, Whelan T, Wang Y, Peto R (2011) Effect of radiotherapy after breast conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378:1707–1716. doi:10.1016/S0140-6736(11)61629-2

    Article  Google Scholar 

  14. Hensel JA, Flaig TW, Theodorescu D (2013) Clinical opportunities and challenges in targeting tumour dormancy. Nat Rev Clin Oncol 10:41–51. doi:10.1038/nrclinonc.2012.207

    Article  CAS  PubMed  Google Scholar 

  15. Mladenov E, Magin S, Soni A, Lliakis G (2013) DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol 3:113. doi:10.3389/fonc.2013.00113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Burnette B, Weichselbaum RR (2013) Radiation as an immune modulator. Semin Radiat Oncol 23:273–280. doi:10.1016/j.semradonc.2013.05.009

    Article  PubMed  Google Scholar 

  17. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ, Schreiber RD (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907. doi:10.1038/nature06309

    Article  CAS  PubMed  Google Scholar 

  18. Liang H, Deng L, Chmura S, Burnette B, Liadis N, Darga T, Beckett MA, Lingen MW, Witt ME, Weichselbaum RR, Fu Y-X (2013) Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. J Immunol 190:5874–5881. doi:10.4049/jimmunol.1202612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Smilowitz HM, Slatkin DN, Lubimova N, Blattman H, Brauer-Krisch E, Bravin A, Di Michiel M, Stepanek J, Le Duc G, Gebbers J-O, Laissue JA (2006) Synergy of gene-mediated immunoprophylaxis and microbeam radiation therapy for advanced intracerebral rat 9L gliosarcomas. J Neurooncol 78:135–143. doi:10.1007/s11060-005-9094-9

    Article  CAS  PubMed  Google Scholar 

  20. Vatner RE, Cooper BT, Vanpouille-Box C, Demaria S, Fomenti SC (2014) Combinations of immunotherapy and radiation in cancer therapy. Front Oncol 4:325. doi:10.3389/fonc.2014.00325

    Article  PubMed Central  PubMed  Google Scholar 

  21. Finkelstein SE, Timmerman R, McBride WH, Schaue D, Hoffe SE, Mantz CA, Wilson GD (2011) The confluence of stereotactic ablative radiotherapy and tumor immunology. Clin Dev Immunol 2011:439752. doi:10.1155/2011/439752

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chow KKH, Hara W, Lim M, Li G (2015) Combining immunotherapy with radiation for the treatment of glioblastoma. J Neurooncol 123:459–464. doi:10.1007/s11060-015-1762-9

    Article  CAS  PubMed  Google Scholar 

  23. Soukup K, Wang X (2015) Radiation meets immunotherapy—a perfect match in the era of combination therapy? Int J Rad Biol 91:299–305. doi:10.3109/09553002.2014.995383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Shahabi V, Postow MA, Tuck D, Wolchok JD (2015) Immune-priming of the tumor microenvironment by radiotherapy. Am J Clin Oncol 38:90–97. doi:10.1097/COC.0b013e3182868ec8

    Article  CAS  PubMed  Google Scholar 

  25. Wattenberg MM, Fahim A, Ahmed MM, Hodge JW (2014) Unlocking the combination: potentiation of radiation-induced antitumor responses with immunotherapy. Radiat Res 182:126–138. doi:10.1667/RR13374.1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kershaw MH, Devaud C, John LB, Westwood JA, Darcy PK (2013) Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment. Oncoimmunology 2:e25962. doi:10.4161/onci.25962

    Article  PubMed Central  PubMed  Google Scholar 

  27. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, Herati RS, Mansfield KD, Patsch D, Amaravadi RK, Schuchter LM, Ishwaran H, Mick R, Pryma DA, Xu X, Feldman MD, Gangadhar TC, Hahn SM, Wherry EJ, Vonderheide RH, Minn AJ (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377. doi:10.1038/nature14292

    Article  CAS  PubMed  Google Scholar 

  28. Filatenkov A, Baker J, Mueller AMS, Kenkel J, Ahn G-O, Dutt S, Zhang N, Kohrt H, Jensen K, Dejbakhsh-Jones S, Shizuru JA, Negrin RN, Engelman EG, Strober S (2015) Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res 21:3727–3739. doi:10.1158/1078-0432.CCR-14-2824

    Article  CAS  PubMed  Google Scholar 

  29. Persa E, Balogh A, Sáfrány G, Lumniczky K (2015) The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett 368:252–261. doi:10.1016/j.canlet.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  30. Sridharan V, Schoenfeld JD (2015) Immune effects of targeted radiation therapy for cancer. Discov Med 19:219–228

    PubMed  Google Scholar 

  31. Gandhi SJ, Minn AJ, Vonderheide RH, Wherry EJ, Hahn SM, Maity A (2015) Awakening the immune system with radiation: optimal dose and fractionation. Cancer Lett 368:185–190. doi:10.1016/j.canlet.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  32. Zeng J, Harris TJ, Lim M, Drake CG, Tran PT (2013) Immune modulation and stereotactic radiation: improving local and abscopal responses. Biomed Res Int 2013:658126. doi:10.1155/2013/658126

    PubMed Central  PubMed  Google Scholar 

  33. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388. doi:10.1158/1078-0432.CCR-09-0265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Burnette B, Weichselbaum RR (2015) The immunobiology of ablative radiation. Semin Radiat Oncol 25:40–45. doi:10.1016/j.semradonc.2014.07.009

    Article  PubMed  Google Scholar 

  35. Mondini M, Nizard M, Tran T, Mauge L, Loi M, Clemenson C, Duque D, Maroun P, Louvet E, Adam J, Badoual C, Helley D, Dransart E, Johannes L, Vozenin MC, Perfettiini JL, Tartour E, Deutsch E (2015) Synergy of radiotherapy and a cancer vaccine for the treatment of HPV-associated head and neck cancer. Mol Cancer Ther 14:1336–1345. doi:10.1158/1535-7163.MCT-14-1015

    Article  CAS  PubMed  Google Scholar 

  36. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315. doi:10.1088/0031-9155/49/18/N03

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a University of Connecticut Health Center seed grant to Henry M. Smilowitz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry M. Smilowitz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in any form with respect to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smilowitz, H.M., Micca, P.L., Sasso, D. et al. Increasing radiation dose improves immunotherapy outcome and prolongation of tumor dormancy in a subgroup of mice treated for advanced intracerebral melanoma. Cancer Immunol Immunother 65, 127–139 (2016). https://doi.org/10.1007/s00262-015-1772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1772-7

Keywords

Navigation