Skip to main content

Advertisement

Log in

Anti-PD-L1 prolongs survival and triggers T cell but not humoral anti-tumor immune responses in a human MUC1-expressing preclinical ovarian cancer model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Monoclonal antibodies that block inhibitory immune checkpoint molecules and enhance anti-tumor responses show clinical promise in advanced solid tumors. Most of the preliminary evidence on therapeutic efficacy of immune checkpoint blockers comes from studies in melanoma, lung and renal cancer. To test the in vivo potential of programmed death-ligand 1 (PD-L1) blockade in ovarian cancer, we recently generated a new transplantable tumor model using human mucin 1 (MUC1)-expressing 2F8 cells. The MUC1 transgenic (MUC1.Tg) mice develop large number of intraperitoneal (IP) tumors following IP injection of 8 × 105 syngeneic 2F8 cells. The tumors are aggressive and display little T cell infiltration. Anti-PD-L1 antibody was administered IP every 2 weeks (200 μg/dose) for a total of three doses. Treatment was started 21 days post-tumor challenge, a time point which corresponds to late tumor stage. The anti-PD-L1 treatment led to substantial T cell infiltration within the tumor and significantly increased survival (p = 0.001) compared to isotype control-treated mice. When the same therapy was administered to wild-type mice challenged with 2F8 tumors, no survival benefit was observed, despite the presence of high titer anti-MUC1 antibodies. However, earlier treatment (day 11) and higher frequency of IP injections restored the T cell responses and led to prolonged survival. Splenocyte profiling via Nanostring using probes for 511 immune genes revealed a treatment-induced immune gene signature consistent with increased T cell-mediated immunity. These findings strongly support further preclinical and clinical strategies exploring PD-L1 blockade in ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AdCre:

Adenovirus encoding for Cre recombinase

ANOVA:

Analysis of variance

BSA:

Bovine serum albumin

CD:

Cluster of differentiation

CTLA-4:

Cytotoxic T lymphocyte antigen-4

DAB:

3,3′-Diaminobenzidine

DE:

Differentially expressed

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

Ethylenediaminetetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

HRP:

Horseradish peroxidase

IFN:

Interferon

IHC:

Immunohistochemistry

IL-2:

Interleukin 2

IP:

Intraperitoneal

IPA:

Ingenuity Pathway Analysis

LAMP-1:

Lysosome-associated membrane protein-1

MUC1:

Mucin 1

NK:

Natural killer

OSE:

Ovarian surface epithelium

PD-1:

Programmed death-1

PD-L1:

Programmed death-ligand 1

SHP-1:

Src homology region 2 domain-containing phosphatase-1

TILs:

Tumor-infiltrating lymphocytes

Tg:

Transgenic

Tregs:

Regulatory T cells

TMB:

Tetramethylbenzidine

WT:

Wild type

References

  1. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA (2014) Ovarian cancer. Lancet 384:1376–1388. doi:10.1016/S0140-6736(13)62146-7

    Article  PubMed  Google Scholar 

  2. Davis A, Tinker AV, Friedlander M (2014) “Platinum resistant” ovarian cancer: what is it, who to treat and how to measure benefit? Gynecol Oncol 133:624–631. doi:10.1016/j.ygyno.2014.02.038

    Article  CAS  PubMed  Google Scholar 

  3. Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD (2014) Immune modulation in cancer with antibodies. Annu Rev Med 65:185–202. doi:10.1146/annurev-med-092012-112807

    Article  CAS  PubMed  Google Scholar 

  4. Finn OJ (2012) Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol. 23(Suppl 8):viii6–viii9. doi:10.1093/annonc/mds256

  5. Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G (2012) Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol 124:192–198. doi:10.1016/j.ygyno.2011.09.039

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543. doi:10.1073/pnas.0509182102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hinrichs CS, Rosenberg SA (2014) Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 257:56–71. doi:10.1111/imr.12132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ostrand-Rosenberg S, Horn LA, Haile ST (2014) The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. J Immunol 193:3835–3841. doi:10.4049/jimmunol.1401572

    Article  CAS  PubMed  Google Scholar 

  9. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. doi:10.1038/nrc3239

    Article  CAS  PubMed  Google Scholar 

  10. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704. doi:10.1146/annurev.immunol.26.021607.090331

    Article  CAS  PubMed  Google Scholar 

  11. Haile ST, Horn LA, Ostrand-Rosenberg S (2014) A soluble form of CD80 enhances antitumor immunity by neutralizing programmed death ligand-1 and simultaneously providing costimulation. Cancer Immunol Res 2:610–615. doi:10.1158/2326-6066.CIR-13-0204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Harvey RD (2014) Immunologic and clinical effects of targeting PD-1 in lung cancer. Clin Pharmacol Ther 96:214–223. doi:10.1038/clpt.2014.74

    Article  CAS  PubMed  Google Scholar 

  13. Naidoo J, Page DB, Wolchok JD (2014) Immune modulation for cancer therapy. Br J Cancer 111:2214–2219. doi:10.1038/bjc.2014.348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. doi:10.1056/NEJMoa1200694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144. doi:10.1056/NEJMoa1305133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133. doi:10.1056/NEJMoa1302369

    Article  CAS  PubMed  Google Scholar 

  17. Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567. doi:10.1038/nature14011

    Article  CAS  PubMed  Google Scholar 

  18. Powles T, Eder JP, Fine GD et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562. doi:10.1038/nature13904

    Article  CAS  PubMed  Google Scholar 

  19. Abiko K, Mandai M, Hamanishi J et al (2013) PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin Cancer Res 19:1363–1374. doi:10.1158/1078-0432.CCR-12-2199

    Article  CAS  PubMed  Google Scholar 

  20. Hamanishi J, Mandai M, Iwasaki M et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365. doi:10.1073/pnas.0611533104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Budiu RA, Elishaev E, Brozick J, Lee M, Edwards RP, Kalinski P, Vlad AM (2013) Immunobiology of human mucin 1 in a preclinical ovarian tumor model. Oncogene 32:3664–3675. doi:10.1038/onc.2012.397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lau SK, Weiss LM, Chu PG (2004) Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol 122:61–69. doi:10.1309/9R6673QEC06D86Y4

    Article  PubMed  Google Scholar 

  23. Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T (2005) Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 11:63–70. doi:10.1038/nm1173

    Article  CAS  PubMed  Google Scholar 

  24. Liu H, Zhang W, Jia Y et al (2013) Single-cell clones of liver cancer stem cells have the potential of differentiating into different types of tumor cells. Cell Death Dis 4:e857. doi:10.1038/cddis.2013.340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Budiu RA, Mantia-Smaldone G, Elishaev E, Chu T, Thaller J, McCabe K, Lenzner D, Edwards RP, Vlad AM (2011) Soluble MUC1 and serum MUC1-specific antibodies are potential prognostic biomarkers for platinum-resistant ovarian cancer. Cancer Immunol Immunother 60:975–984. doi:10.1007/s00262-011-1010-x

    Article  CAS  PubMed  Google Scholar 

  26. Vlad AM, Budiu RA, Lenzner DE et al (2010) A phase II trial of intraperitoneal interleukin-2 in patients with platinum-resistant or platinum-refractory ovarian cancer. Cancer Immunol Immunother 59:293–301. doi:10.1007/s00262-009-0750-3

    Article  CAS  PubMed  Google Scholar 

  27. Smith JB, Stashwick C, Powell DJ Jr (2014) B7-H4 as a potential target for immunotherapy for gynecologic cancers: a closer look. Gynecol Oncol 134:181–189. doi:10.1016/j.ygyno.2014.03.553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Duraiswamy J, Freeman GJ, Coukos G (2013) Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res 73:6900–6912. doi:10.1158/0008-5472.CAN-13-1550

    Article  CAS  PubMed  Google Scholar 

  29. Romano S, Nappo G, Sorrentino A, Romano MF (2011) The large immunophilin FKBP51 in apoptosis and cancer. Curr Med Chem 18(35):5424–5429. doi:10.2174/092986711798194333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Yu F, Ng SS, Chow BK, Sze J, Lu G, Poon WS, Kung HF, Lin MC (2011) Knockdown of interferon-induced transmembrane protein 1 (IFITM1) inhibits proliferation, migration, and invasion of glioma cells. J Neurooncol 103:187–195. doi:10.1007/s11060-010-0377-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Luborsky JL, Barua A, Shatavi SV, Kebede T, Abramowicz J, Rotmensch J (2005) Anti-tumor antibodies in ovarian cancer. Am J Reprod Immunol 54:55–62. doi:10.1111/j.1600-0897.2005.00287.x

    Article  CAS  PubMed  Google Scholar 

  32. Muhlbauer M, Fleck M, Schutz C, Weiss T, Froh M, Blank C, Scholmerich J, Hellerbrand C (2006) PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and -gamma and mediates T cell apoptosis. J Hepatol 45:520–528. doi:10.1016/j.jhep.2006.05.007

    Article  PubMed  Google Scholar 

  33. Lengyel E, Burdette JE, Kenny HA, Matei D, Pilrose J, Haluska P, Nephew KP, Hales DB, Stack MS (2014) Epithelial ovarian cancer experimental models. Oncogene 33:3619–3633. doi:10.1038/onc.2013.321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Greenaway J, Moorehead R, Shaw P, Petrik J (2008) Epithelial-stromal interaction increases cell proliferation, survival and tumorigenicity in a mouse model of human epithelial ovarian cancer. Gynecol Oncol 108:385–394. doi:10.1016/j.ygyno.2007.10.035

    Article  CAS  PubMed  Google Scholar 

  35. Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, Persons DL, Smith PG, Terranova PF (2000) Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21:585–591. doi:10.1093/carcin/21.4.585

    Article  CAS  PubMed  Google Scholar 

  36. Kimura T, Finn OJ (2013) MUC1 immunotherapy is here to stay. Expert Opin Biol Ther 13:35–49. doi:10.1517/14712598.2012.725719

    Article  CAS  PubMed  Google Scholar 

  37. Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337. doi:10.1158/1078-0432.CCR-09-0737

    Article  PubMed  Google Scholar 

  38. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281. doi:10.1038/nri3191

    Article  CAS  PubMed  Google Scholar 

  39. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L (2012) Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 12:239–252. doi:10.1038/nri3174

    Article  CAS  PubMed  Google Scholar 

  40. Fremd C, Schuetz F, Sohn C, Beckhove P, Domschke C (2013) B cell-regulated immune responses in tumor models and cancer patients. Oncoimmunology 2:e25443. doi:10.4161/onci.25443

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Department of Defense (DOD) Ovarian Cancer Academy Award W81XWH-10-1-0525 and National Cancer Institute (NCI) R01 CA163462 (to A. Vlad) and P50 CA159981 (to R. Edwards and A. Vlad). Xin Huang is Ovarian Cancer Research Fund Liz Tilberis Scholar (OCRF 258940) and American Cancer Society (ACS) Research Scholar (RSG-12-188-01-RMC). This project used the UPCI Peptide Synthesis Facility that is supported in part by NCI award P30 CA047904.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All animal studies have been approved by University of Pittsburgh Institutional Animal Care and Use Committee (IACUC), according to the Guide for the Care and Use of Laboratory Animals from the National Research Center of the National Academies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anda M. Vlad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1962 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mony, J.T., Zhang, L., Ma, T. et al. Anti-PD-L1 prolongs survival and triggers T cell but not humoral anti-tumor immune responses in a human MUC1-expressing preclinical ovarian cancer model. Cancer Immunol Immunother 64, 1095–1108 (2015). https://doi.org/10.1007/s00262-015-1712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1712-6

Keywords

Navigation