Skip to main content

Advertisement

Log in

Dendritic cells transfected with heat-shock protein 70 messenger RNA for patients with hepatitis C virus-related hepatocellular carcinoma: a phase 1 dose escalation clinical trial

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

We previously reported overexpression of heat-shock protein (HSP) 70 in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC) using proteomic profiling and immunohistochemical staining (IHS). This suggested that HSP70 could be a molecular target for treatment of HCC.

Methods

Twelve patients with HCV-related HCC were enrolled in a phase 1 clinical trial. Dendritic cells (DCs) transfected with HSP70 mRNA (HSP70-DCs) induced by electroporation were injected intradermally. Patients were treated three times every 3 weeks. The number of HSP70-DCs injected was 1 × 107 as the lowest dose, then 2 × 107 as the medium dose, and then 3 × 107 as the highest dose. Immunological analyses were performed.

Findings

No adverse effects of grade III/IV, except one grade III liver abscess at the 3 × 107 dose, were observed. Thus, we added three more patients to confirm whether 3 × 107 is an appropriate dose. Eventually, we chose 3 × 107 as the recommended dose of DCs. Complete response (CR) without any recurrence occurred in two patients, stable disease in five, and progression of disease in five. The two patients with CR have had no recurrence for 44 and 33 months, respectively. IHS in one patient who underwent partial hepatectomy showed infiltration of CD8+ T cells and granzyme B in tumors, indicating that the dominant immune effector cells were cytotoxic T lymphocytes with tumor-killing activity.

Interpretation

This study demonstrated that HSP70-DCs therapy is both safe and feasible in patients with HCV-related HCC. Further clinical trials should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFP:

α-Fetoprotein

CR:

Complete response

CT:

Computed tomography

CTCAE:

Common Terminology Criteria for Adverse Events version 3.0

CTL:

Cytotoxic T cell

DCs:

Dendritic cells

ECOG PS:

Eastern Cooperative Oncology Group Performance Status

ELISPOT:

Enzyme-linked immunospot

FITC:

Fluorescein isothiocyanate

GM-CFS:

Granulocyte–macrophage colony-stimulating factor

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HSP:

Heat-shock protein

HSP70-DCs:

HSP70 mRNA-transfected DCs

IFN-γ:

Interferon gamma

IHS:

Immunohistochemical staining

IL-4:

Interleukin-4

IM-DCs:

Immature DCs

mAb:

Monoclonal antibodies

M-DCs:

Mature DCs

MRI:

Magnetic resonance imaging

PBMCs:

Peripheral blood mononuclear cells

PD:

Progression of disease

PIVKA-II:

Vitamin K absence or antagonist II

RECIST:

Response Evaluation Criteria in Solid Tumors guideline version 1.1

RFA:

Radiofrequency ablation

SD:

Stable disease

SE:

Standard error

TAA:

Tumor-associated antigens

TACE:

Transcatheter arterial chemoembolization

TNF-α:

Tumor necrosis factor-α

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    Article  PubMed  Google Scholar 

  2. Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31(4):339–346. doi:10.1038/ng0802-339

    Article  CAS  PubMed  Google Scholar 

  3. Ohishi W, Kitamoto M, Aikata H, Kamada K, Kawakami Y, Ishihara H, Kamiyasu M, Nakanishi T, Tazuma S, Chayama K (2003) Impact of aging on the development of hepatocellular carcinoma in patients with hepatitis C virus infection in Japan. Scand J Gastroenterol 38(8):894–900

    Article  CAS  PubMed  Google Scholar 

  4. Ikai I, Arii S, Ichida T, Okita K, Omata M, Kojiro M, Takayasu K, Nakanuma Y, Makuuchi M, Matsuyama Y, Yamaoka Y (2005) Report of the 16th follow-up survey of primary liver cancer. Hepatol Res 32(3):163–172. doi:10.1016/j.hepres.2005.04.005

    Article  PubMed  Google Scholar 

  5. Thomas MB, Abbruzzese JL (2005) Opportunities for targeted therapies in hepatocellular carcinoma. J Clin Oncol 23(31):8093–8108. doi:10.1200/JCO.2004.00.1537

    Article  CAS  PubMed  Google Scholar 

  6. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362(9399):1907–1917. doi:10.1016/S0140-6736(03)14964-1

    Article  PubMed  Google Scholar 

  7. Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, Takao T, Tamesa T, Tangoku A, Tabuchi H, Hamada K, Nakayama H, Ishitsuka H, Miyamoto T, Hirabayashi A, Uchimura S, Hamamoto Y (2003) Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet 361(9361):923–929. doi:10.1016/S0140-6736(03)12775-4

    Article  CAS  PubMed  Google Scholar 

  8. Iizuka N, Hamamoto Y, Oka M (2004) Predicting individual outcomes in hepatocellular carcinoma. Lancet 364(9448):1837–1839. doi:10.1016/S0140-6736(04)17455-2

    Article  PubMed  Google Scholar 

  9. Itoh Y, Ohkubo K, Iuchi H, Michitaka K, Horiike N, Onji M (2002) Chronological changes of causes of death and distant metastasis in hepatocellular carcinoma. Oncol Rep 9(2):331–335

    PubMed  Google Scholar 

  10. Yang Y, Nagano H, Ota H, Morimoto O, Nakamura M, Wada H, Noda T, Damdinsuren B, Marubashi S, Miyamoto A, Takeda Y, Dono K, Umeshita K, Nakamori S, Wakasa K, Sakon M, Monden M (2007) Patterns and clinicopathologic features of extrahepatic recurrence of hepatocellular carcinoma after curative resection. Surgery 141(2):196–202. doi:10.1016/j.surg.2006.06.033

    Article  PubMed  Google Scholar 

  11. Unitt E, Marshall A, Gelson W, Rushbrook SM, Davies S, Vowler SL, Morris LS, Coleman N, Alexander GJ (2006) Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol 45(2):246–253. doi:10.1016/j.jhep.2005.12.027

    Article  CAS  PubMed  Google Scholar 

  12. Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y, Kakizoe T (2000) Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356(9232):802–807. doi:10.1016/S0140-6736(00)02654-4

    Article  CAS  PubMed  Google Scholar 

  13. Takashima M, Kuramitsu Y, Yokoyama Y, Iizuka N, Toda T, Sakaida I, Okita K, Oka M, Nakamura K (2003) Proteomic profiling of heat shock protein 70 family members as biomarkers for hepatitis C virus-related hepatocellular carcinoma. Proteomics 3(12):2487–2493. doi:10.1002/pmic.200300621

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida S, Hazama S, Tokuno K, Sakamoto K, Takashima M, Tamesa T, Torigoe T, Sato N, Oka M (2009) Concomitant overexpression of heat-shock protein 70 and HLA class-I in hepatitis C virus-related hepatocellular carcinoma. Anticancer Res 29(2):539–544

    PubMed  Google Scholar 

  15. Liao X, Li Y, Bonini C, Nair S, Gilboa E, Greenberg PD, Yee C (2004) Transfection of RNA encoding tumor antigens following maturation of dendritic cells leads to prolonged presentation of antigen and the generation of high-affinity tumor-reactive cytotoxic T lymphocytes. Mol Ther 9(5):757–764. doi:10.1016/j.ymthe.2004.02.011

    Article  CAS  PubMed  Google Scholar 

  16. Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184(2):465–472

    Article  CAS  PubMed  Google Scholar 

  17. Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98(1):49–56

    Article  PubMed  Google Scholar 

  18. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. doi:10.1016/j.ejca.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  19. Tan A, Aucejo F, Kim R (2010) Is there a role for adjuvant treatment after hepatic resection for hepatocellular carcinoma? Oncology 78(3–4):161–171. doi:10.1159/000315577

    Article  CAS  PubMed  Google Scholar 

  20. Litzow MR, Dietz AB, Bulur PA, Butler GW, Gastineau DA, Hoering A, Fink SR, Letendre L, Padley DJ, Paternoster SF, Tefferi A, Vuk-Pavlovic S (2006) Testing the safety of clinical-grade mature autologous myeloid DC in a phase I clinical immunotherapy trial of CML. Cytotherapy 8(3):290–298. doi:10.1080/14653240600735743

    Article  CAS  PubMed  Google Scholar 

  21. Olin MR, Low W, McKenna DH, Haines SJ, Dahlheimer T, Nascene D, Gustafson MP, Dietz AB, Clark HB, Chen W, Blazar B, Ohlfest JR, Moertel C (2014) Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response. J Immunother Cancer 2:4. doi:10.1186/2051-1426-2-4

    Article  PubMed Central  PubMed  Google Scholar 

  22. Xie F, Zhang X, Li H, Zheng T, Xu F, Shen R, Yan L, Yang J, He J (2012) Adoptive immunotherapy in postoperative hepatocellular carcinoma: a systemic review. PLoS One 7(8):e42879. doi:10.1371/journal.pone.0042879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tada F, Abe M, Hirooka M, Ikeda Y, Hiasa Y, Lee Y, Jung NC, Lee WB, Lee HS, Bae YS, Onji M (2012) Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int J Oncol 41(5):1601–1609. doi:10.3892/ijo.2012.1626

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, Steven NM, Kerr DJ, Young LS, Adams DH (2009) A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology 49(1):124–132. doi:10.1002/hep.22626

    Article  PubMed  Google Scholar 

  25. Ferrarini M, Heltai S, Zocchi MR, Rugarli C (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51(4):613–619

    Article  CAS  PubMed  Google Scholar 

  26. Chuma M, Sakamoto M, Yamazaki K, Ohta T, Ohki M, Asaka M, Hirohashi S (2003) Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology 37(1):198–207. doi:10.1053/jhep.2003.50022

    Article  CAS  PubMed  Google Scholar 

  27. Elsner L, Muppala V, Gehrmann M, Lozano J, Malzahn D, Bickeboller H, Brunner E, Zientkowska M, Herrmann T, Walter L, Alves F, Multhoff G, Dressel R (2007) The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J Immunol 179(8):5523–5533

    Article  CAS  PubMed  Google Scholar 

  28. Takemoto S, Nishikawa M, Guan X, Ohno Y, Yata T, Takakura Y (2010) Enhanced generation of cytotoxic T lymphocytes by heat shock protein 70 fusion proteins harboring both CD8(+) T cell and CD4(+) T cell epitopes. Mol Pharm 7(5):1715–1723. doi:10.1021/mp1001069

    Article  CAS  PubMed  Google Scholar 

  29. Ciocca DR, Cayado-Gutierrez N, Maccioni M, Cuello-Carrion FD (2012) Heat shock proteins (HSPs) based anti-cancer vaccines. Curr Mol Med 12(9):1183–1197

    Article  CAS  PubMed  Google Scholar 

  30. Calderwood SK, Theriault JR, Gong J (2005) Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol 35(9):2518–2527. doi:10.1002/eji.200535002

    Article  CAS  PubMed  Google Scholar 

  31. Zhang HM, Zhang LW, Ren J, Fan L, Si XM, Liu WC (2006) Induction of alpha-fetoprotein-specific CD4- and CD8-mediated T-cell response using RNA-transfected dendritic cells. Cell Immunol 239(2):144–150. doi:10.1016/j.cellimm.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  32. Gilboa E, Vieweg J (2004) Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 199:251–263. doi:10.1111/j.0105-2896.2004.00139.x

    Article  CAS  PubMed  Google Scholar 

  33. Binder RJ (2009) CD40-independent engagement of mammalian hsp70 by antigen-presenting cells. J Immunol 182(11):6844–6850. doi:10.4049/jimmunol.0900026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by KAKEN 20591612. We thank Ms. Akiko Sano, Ms. Kaori Kaneyasu, and Ms. Yuko Yanai for their excellent technical assistance.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinari Maeda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, Y., Yoshimura, K., Matsui, H. et al. Dendritic cells transfected with heat-shock protein 70 messenger RNA for patients with hepatitis C virus-related hepatocellular carcinoma: a phase 1 dose escalation clinical trial. Cancer Immunol Immunother 64, 1047–1056 (2015). https://doi.org/10.1007/s00262-015-1709-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1709-1

Keywords

Navigation