Skip to main content

Advertisement

Log in

Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients. Several strategies have been employed to load DC with antigen, including peptide loading. To increase immunogenicity of peptides, major histocompatibility complex (MHC) class I binding affinity and stability of peptide–MHC complexes at the cell surface may be improved by modification of the amino acid sequence. In this study, we compared the capacity of DC loaded with wild-type versus modified gp100 peptides with higher binding affinities to induce an immune and clinical response in advanced melanoma patients. Metastatic HLA-A2.1+ melanoma patients were vaccinated intravenously (on average 25 × 106 DC) and intradermally (on average 11 × 106 DC) with mature DC loaded with keyhole limpet hemocyanin (KLH) together with tyrosinase peptide and either wild-type (15 patients) or modified (12 patients) gp100 peptides. All vaccinated patients showed a pronounced proliferative T cell or humoral response against KLH. Gp100-specific T cell responses were monitored in post-treatment delayed type hypersensitivity (DTH) skin biopsies by tetramer and functional analysis. Antigen-specific T cells were found in 2 of 15 patients vaccinated with wild-type gp100-loaded DC, versus 1 of 12 patients vaccinated with modified peptide-loaded DC. These three patients also had the best clinical response, with long-term (>8 years) complete responses in two patients, one in each group. We conclude that vaccination with peptide-loaded DC can result in long-term clinical responses in a minority of metastatic melanoma patients, and that the use of modified as compared to wild-type gp100 peptides for DC loading does not result in a relevant enhanced immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  2. Lesterhuis WJ, Aarntzen EHJG, Vries IJM, Schuurhuis DH, Figdor CG, Adema GJ, Punt CJA (2008) Dendritic cell vaccines in melanoma: from promise to proof? Crit Rev Oncol Hematol 66:118–134

    Article  CAS  PubMed  Google Scholar 

  3. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61:6451–6458

    CAS  PubMed  Google Scholar 

  4. de Vries IJM, Lesterhuis WJ, Scharenborg NM, Engelen LPH, Ruiter DJ, Gerritsen MJP, Croockewit S, Britten CM, Torensma R, Adema GJ, Figdor CG, Punt CJA (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100

    PubMed  Google Scholar 

  5. de Vries IJM, Krooshoop DJEB, Scharenborg NM, Lesterhuis WJ, Diepstra JHS, van Muijen GNP, Strijk SP, Ruers TJ, Boerman OC, Oyen WJG, Adema GJ, Punt CJA, Figdor CG (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63:12–17

    PubMed  Google Scholar 

  6. de Vries IJM, Bernsen MR, Lesterhuis WJ, Scharenborg NM, Strijk SP, Gerritsen MJP, Ruiter DJ, Figdor CG, Punt CJA, Adema GJ (2005) Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 23:5779–5787

    Article  PubMed  Google Scholar 

  7. de Vries IJM, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJG, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JWM, Scheenen TWJ, Punt CJA, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  Google Scholar 

  8. Lesterhuis WJ, de Vries IJM, Schuurhuis DH, Boullart ACI, Jacobs JFM, de Boer AJ, Scharenborg NM, Brouwer HMH, van de Rakt MWMM, Figdor CG, Ruers TJ, Adema GJ, Punt CJA (2006) Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol 17:974–980

    Article  CAS  PubMed  Google Scholar 

  9. Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B, Fritsch PO, Romani N, Schuler G (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195:1279–1288

    Article  CAS  PubMed  Google Scholar 

  10. Figdor CG, de Vries IJM, Lesterhuis WJ, Melief CJM (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480

    Article  CAS  PubMed  Google Scholar 

  11. Van den Eynde BJ, van der Bruggen P (1997) T cell defined tumor antigens. Curr Opin Immunol 9:684–693

    Article  PubMed  Google Scholar 

  12. Bakker ABH, van der Burg SH, Huijbens RJF, Drijfhout JW, Melief CJM, Adema GJ, Figdor CG (1997) Analogues of CTL epitopes with improved MHC class-I binding capacity elicit anti-melanoma CTL recognizing the wild-type epitope. Int J Cancer 70:302–309

    Article  CAS  PubMed  Google Scholar 

  13. Parkhurst MR, Salgaller ML, Southwood S, Robbins PF, Sette A, Rosenberg SA, Kawakami Y (1996) Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 157:2539–2548

    CAS  PubMed  Google Scholar 

  14. Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG, Fleming ID, Gershenwald JE, Houghton A, Kirkwood JM, McMasters KM, Mihm MF, Morton DL, Reintgen DS, Ross MI, Sober A, Thompson JA, Thompson JF (2001) Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol 19:3635–3648

    CAS  PubMed  Google Scholar 

  15. Keilholz U, Goey SH, Punt CJ, Proebstle TM, Salzmann R, Scheibenbogen C, Schadendorf D, Liénard D, Enk A, Dummer R, Hantich B, Geueke AM, Eggermont AM (1997) Interferon alfa-2a and interleukin-2 with or without cisplatin in metastatic melanoma: a randomized trial of the European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. J Clin Oncol 15:2579–2588

    CAS  PubMed  Google Scholar 

  16. Tsuchida Y, Therasse P (2001) Response evaluation criteria in solid tumors (RECIST): new guidelines. Med Pediatr Oncol 37:1–3

    Article  CAS  PubMed  Google Scholar 

  17. de Vries IJM, Eggert AAO, Scharenborg NM, Vissers JLM, Lesterhuis WJ, Boerman OC, Punt CJA, Adema GJ, Figdor CG (2002) Phenotypical and functional characterization of clinical grade dendritic cells. J Immunother 25:429–438

    Article  PubMed  Google Scholar 

  18. Thurner B, Roder C, Dieckmann D, Heuer H, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223:1–15

    Article  CAS  PubMed  Google Scholar 

  19. Bakker ABH, Schreurs MWJ, Tafazzul G, de Boer AJ, Kawakami Y, Adema GJ, Figdor CG (1995) Identification of a novel peptide derived from the melanocyte-specific Gp100 antigen as the dominant epitope recognized by an Hla-A2.1-restricted antimelanoma Ctl line. Int J Cancer 62:97–102

    Article  CAS  PubMed  Google Scholar 

  20. Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL (1994) Identification of a peptide recognized by 5 melanoma-specific human cytotoxic T-cell lines. Science 264:716–719

    Article  CAS  PubMed  Google Scholar 

  21. Wolfel T, Schneider J, Zumbuschenfelde KHM, Rammensee HG, Rotzschke O, Falk K (1994) Isolation of naturally processed peptides recognized by cytolytic T-lymphocytes (Ctl) on human-melanoma cells in association with Hla-A2.1. Int J Cancer 57:413–418

    Article  CAS  PubMed  Google Scholar 

  22. Haanen JBAG, Toebes M, Cordaro TA, Wolkers MC, Kruisbeek AM, Schumacher TNM (1999) Systemic T cell expansion during localized viral infection. Eur J Immunol 29:1168–1174

    Article  CAS  PubMed  Google Scholar 

  23. Bakker ABH, Schreurs MWJ, de Boer AJ, Kawakami Y, Rosenberg SA, Adema GJ, Figdor CG (1994) Melanocyte lineage-specific antigen Gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 179:1005–1009

    Article  CAS  PubMed  Google Scholar 

  24. Karanikas V, Lurquin C, Colau D, van Baren N, de Smet C, Lethe B, Connerotte T, Corbiere V, Demoitie MA, Lienard D, Dreno B, Velu T, Boon T, Coulie PG (2003) Monoclonal anti-MAGE-3 CTL responses in melanoma patients displaying tumor regression after vaccination with a recombinant canarypox virus. J Immunol 171:4898–4904

    CAS  PubMed  Google Scholar 

  25. Speiser DE, Baumgaertner P, Voelter V, Devevre E, Barbey C, Rufer N, Romero P (2008) Unmodified self antigen triggers human CD8 T cells with stronger tumor reactivity than altered antigen. Proc Natl Acad Sci USA 105:3849–3854

    Article  CAS  PubMed  Google Scholar 

  26. Coulie PG, Karanikas V, Colau D, Lurquin C, Landry C, Marchand M, Dorval T, Brichard V, Boon T (2001) A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci USA 98:10290–10295

    Article  CAS  PubMed  Google Scholar 

  27. Stuge TB, Holmes SP, Saharan S, Tuettenberg A, Roederer M, Weber JS, Lee PP (2004) Diversity and recognition efficiency of T cell responses to cancer. PLoS Med 1:149–160

    Article  CAS  Google Scholar 

  28. Clay TM, Custer MC, Mckee MD, Parkhurst M, Robbins PF, Kerstann K, Wunderlich J, Rosenberg SA, Nishimura MI (1999) Changes in the fine specificity of gp100(209–217)-reactive T cells in patients following vaccination with a peptide modified at an HLA-A2.1 anchor residue. J Immunol 162:1749–1755

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Netherlands Organization for Scientific Research (920-03-250), the Dutch Cancer Society (AZN/KUN 95/910 and 99/1950), the EU (Cancer immunotherapy LSHC-CT-2006-518234 and DC-THERA LSHB-CT-2004-512074), and the TIL-foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Jolanda M. de Vries.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesterhuis, W.J., Schreibelt, G., Scharenborg, N.M. et al. Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunol Immunother 60, 249–260 (2011). https://doi.org/10.1007/s00262-010-0942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0942-x

Keywords

Navigation