Skip to main content

Advertisement

Log in

T cells are crucial for the anti-metastatic effect of anti-epidermal growth factor receptor antibodies

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Experimental evidences supporting the epidermal growth factor receptor (EGFR) as an important molecule for tumor metastasis had been accumulated. Currently, anti-EGFR monoclonal antibodies (mAbs) constitute a promising approach for the treatment of patients with metastatic tumors. However, the mechanisms associated with the potent anti-metastatic effect of these mAbs have not been completely elucidated due to the lack of appropriate syngeneic preclinical models. In this paper, we have investigated the effects of 7A7, an antibody specific to murine EGFR, on the metastatic properties of D122 murine lung carcinoma. 7A7 mAb significantly impaired metastatic spread of D122 cells in C57BL/6 mice by direct anti-proliferative and pro-apoptotic effects on tumor metastasis. 7A7 mAb capacity to inhibit EGFR activation on D122 cells could contribute to its anti-metastatic effect. In addition, 7A7 mAb was able to induce in vitro antibody-dependent cell-mediated cytotoxicity on D122 cells. Interestingly, 7A7 mAb treatment increased the number of natural killer cells, T lymphocytes and dendritic cells infiltrating the metastatic sites. More strikingly, depletion of CD8+ and CD4+ T cells in vivo completely abrogated the 7A7 mAb anti-metastatic activity whereas function of natural killer cells was irrelevant. This study supports an in vivo role for T cell response in the mechanism of action of anti-EGFR mAbs, suggesting the induction of an adjuvant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EGFR:

Epidermal growth factor receptor

mAb:

Monoclonal antibody

EGF:

Epidermal growth factor

PARP:

Poly (ADP-ribose) polymerase

STAT 3:

Signal transducer and activator of transcription 3

FBS:

Fetal bovine serum

PI:

Propidium iodide

ADCC:

Antibody-dependent cell-mediated cytotoxicity

MAPK:

Mitogen-activated protein kinase

PI3–K:

Phosphotidylinositol-3 kinase

NK:

Natural killer

DC:

Dendritic cell

References

  1. Khazaie K, Schirrmacher V, Lichtner RB (1993) EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev 12:255–274

    Article  PubMed  CAS  Google Scholar 

  2. Verbeek BS, Adriaansen-Slot SS, Vroom TM, Beckers T, Rijksen G (1998) Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Lett 425:145–150

    Article  PubMed  CAS  Google Scholar 

  3. O-Charoenrat P, Rhys-Evans P, Modjtahedi H, Court W, Box G, Eccles S (2000) Overexpression of epidermal growth factor receptor in human head and neck squamous carcinoma cell lines correlates with matrix metalloproteinase-9 expression and in vitro invasion. Int J Cancer 86:307–317

    Article  PubMed  CAS  Google Scholar 

  4. Radinsky R, Risin S, Fan D, Dong Z, Bielenberg D, Bucana CD, Fidler IJ (1995) Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res 1:19–31

    PubMed  CAS  Google Scholar 

  5. Price JT, Wilson HM, Haites NE (1996) EGF increases in vitro invasion, motility and adhesion interactions of the primary renal carcinoma cell line, A704. Eur J Cancer 32A:1977–1982

    Article  PubMed  CAS  Google Scholar 

  6. Salomon D, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232

    Article  PubMed  CAS  Google Scholar 

  7. Xue C, Wyckoff J, Liang F, Sidani M, Violini S, Tsai K, Zhang Y, Sahai E, Condeelis J, Segall J (2006) EGFR overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res 66:192–197

    Article  PubMed  CAS  Google Scholar 

  8. Turner T, Chen P, Goodly L, Wells A (1996) EGFR signaling enhances in vivo invasiveness of DU-145 human prostate carcinoma cells. Clin Exp Metastasis 14:409–418

    Article  PubMed  CAS  Google Scholar 

  9. Pal SK, Pegram M (2005) Epidermal growth factor receptor and signal transduction: potential targets for anti-cancer therapy. Anticancer Drugs 16:483–494

    Article  PubMed  CAS  Google Scholar 

  10. Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve BY, Hicklin DJ, Radinsky R, Dinney CP (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 5:257–265

    PubMed  CAS  Google Scholar 

  11. Bruns CJ, Harbison MT, Davis DW, Portera CA, Tsan R, McConkey DJ, Evans DB, Abbruzzese JL, Hicklin DJ, Radinsky R (2000) Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res 6:1936–1948

    PubMed  CAS  Google Scholar 

  12. Prewett M, Rothman M, Waksal H, Feldman M, Bander NH, Hicklin DJ (1998) Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. Clin Cancer Res 4:2957–2966

    PubMed  CAS  Google Scholar 

  13. Selenko N, Maidic O, Draxier S, Berer A, Jager U, Knapp W, Stockl J (2001) CD20 antibody (C2B8)-induced apoptosis of lymphoma cells promotes phagocytosis by dendritic cells and cross-priming of CD8+ cytotoxic T cells. Leukemia 15:1619–1626

    Article  PubMed  CAS  Google Scholar 

  14. Crombet T, Osorio M, Cruz T, Roca C, del Castillo R, Mon R, Iznaga-Escobar N, Figueredo R, Koropatnick J, Renginfo E, Fernandez E, Alvarez D, Torres O, Ramos M, Leonard I, Perez R, Lage A (2004) Use of the humanized anti-epidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients. J Clin Oncol 22:1646–1654

    Article  PubMed  CAS  Google Scholar 

  15. Crombet T, Figueredo J, Catala M, González S, Selva J, Cruz T, Toledo C, Silva S, Pestano5 Y, Ramos1 M, Leonard1 I, Torres1 O, Marinello6 P, Pérez1 R, Lage A (2006) Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3. Cancer Biol Therapy 5:375–379

    Article  Google Scholar 

  16. Garrido G, Sánchez B, Rodriguez HM, Menna PL, Alonso D, Fernandez LE (2004) 7A7 MAb: a new tool for the pre-clinical evaluation EGFR-based therapies. Hybrid Hybridomics 23:168–175

    Article  PubMed  CAS  Google Scholar 

  17. Vazquez AM, Perez A, Hernandez AM, Macias A, Alfonso M, Bombino G, Perez R (1998) Syngeneic anti-idiotypic monoclonal antibodies to an anti-NeuGc-containing ganglioside monoclonal antibody. Hybrid Hybridomics 17:527–534

    CAS  Google Scholar 

  18. Corazzari M, Lovat PE, Oliverio S, Di Sano F, Donnorso RP, Redfern CP, Piacentini M (2005) Fenretinide: a p53-independent way to kill cancer cells. Biochem Biophys Res Commun 331:810–815

    Article  PubMed  CAS  Google Scholar 

  19. Eisenbach L, Hollander N, Greenfeld L, Yakor H, Segal S, Feldman M (1984) The differential expression of H-2K versus H-2D antigens, distinguishing high-metastatic from low-metastatic clones, is correlated with the immunogenic properties of the tumor cells. Int J Cancer 34:567–573

    Article  PubMed  CAS  Google Scholar 

  20. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res 47:943–946

    PubMed  CAS  Google Scholar 

  21. Sheehy ME, McDermott AB, Furlan SN, Klenerman P, Nixon DF (2001) A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. J Immunol Methods 249:99–110

    Article  PubMed  CAS  Google Scholar 

  22. Lasarte JJ, Sarobe P, Prieto J, Borras-Cuesta F (1995) In vivo cytotoxic T-lymphocyte induction may take place via CD8 T helper lymphocytes. Res Immunol 146:35

    Article  PubMed  CAS  Google Scholar 

  23. Liao J, Yang GY, Park ES, Meng X, Sun Y, Jia D, Seril DN, Yang CS (2004) Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea. Nutr Cancer 48:44–53

    Article  PubMed  Google Scholar 

  24. Watanabe T, Kawamura T, Kawamura H, Haga M, Shirai K, Watanabe H, Eguchi S, Abo T (1997) Intermediate TCR cells in mouse lung: their effector function to induce pneumonitis in mice with autoimmune-like graft-versus-host disease. J Immunol 158:5805–5814

    PubMed  CAS  Google Scholar 

  25. Mendelsohn J, Baselga J (2003) Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21:2787–2799

    Article  PubMed  CAS  Google Scholar 

  26. Janmaat ML, Kruyt FA, Rodriguez JA, Giaccone G (2003) Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways. Clin Cancer Res 9:2316–2326

    PubMed  CAS  Google Scholar 

  27. Huang SM, Bock JM, Harari PM (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59:1935–1940

    PubMed  CAS  Google Scholar 

  28. Yang XD, Wang P, Fredlin P, Davis CG (2002) ABX-EGF, a fully human anti-EGF receptor monoclonal antibody: inhibition of prostate cancer in vitro and in vivo. Proc Am Soc Clin Oncol; Abstract 2454

  29. Huang SM, Li J, Harari PM (2002) Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Mol Cancer Ther 1:507–514

    PubMed  CAS  Google Scholar 

  30. Naramura M, Gillies SD, Mendelsohn J, Reisfeld RA, Mueller BM (1993) Therapeutic potential of chimeric and murine anti-(epidermal growth factor receptor) antibodies in a metastasis model for human melanoma. Cancer Immunol Immunother 37:343–349

    Article  PubMed  CAS  Google Scholar 

  31. Bier H, Hoffmann T, Haas I, van Lierop A (1998) Anti-(epidermal growth factor) receptor monoclonal antibodies for the induction of antibody-dependent cell-mediated cytotoxicity against squamous cell carcinoma lines of the head and neck. Cancer Immunol Immunother 46:167–173

    Article  PubMed  CAS  Google Scholar 

  32. Sánchez B, Suárez E, Garrido G, Hernández T, Pérez R, Ullrich A, Fernández L (2006) Active anti-metastatic immunotherapy in Lewis Lung Carcinoma with self EGFR extra cellular domain protein in VSSP adjuvant. Int J Cancer 119:2190–2199

    Article  CAS  Google Scholar 

  33. Macluskey M, Baillie R, Chandrachud LM, Pendleton N, Schor AM (2000) High levels of apoptosis are associated with improved survival in non-small cell lung cancer. Anticancer Res 20:2123–2128

    PubMed  CAS  Google Scholar 

  34. Cartron G, Watier H, Golay J, Solal-Celigny P (2004) From the bench to the bedside: ways to improve rituximab efficacy. Blood 104:2635–2639

    Article  PubMed  CAS  Google Scholar 

  35. Restifo N (2000) Building better vaccines: how apoptotic cell death can induce inflammation and activate innate and adaptative immunity. Curr Opin Immunol 12:597–603

    Article  PubMed  CAS  Google Scholar 

  36. Lake RA, Robinson BWS (2005) Immunotherapy and chemotherapy-a practical partnership. Nat Rev 5:397–405

    CAS  Google Scholar 

  37. Fen H, Zeng Y, Graner MW, Katsanis E (2002) Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood 100:4108–4115

    Article  CAS  Google Scholar 

  38. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Armando López (Center of Molecular Immunology) for their excellent technical assistance with animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greta Garrido.

Additional information

This work was supported by the Cuban Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrido, G., Lorenzano, P., Sánchez, B. et al. T cells are crucial for the anti-metastatic effect of anti-epidermal growth factor receptor antibodies. Cancer Immunol Immunother 56, 1701–1710 (2007). https://doi.org/10.1007/s00262-007-0313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0313-4

Keywords

Navigation