Skip to main content

Advertisement

Log in

Bee venom secretory phospholipase A2 and phosphatidylinositol-homologues cooperatively disrupt membrane integrity, abrogate signal transduction and inhibit proliferation of renal cancer cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Bee venom secretory phospholipase A2 (bv-sPLA2) and phosphatidylinositol-(3,4)-bisphosphate (PtdIns(3,4)P2) act synergistically to induce cell death in tumour cells of various origins with concomitant stimulation of the immune system. Here, we investigated the mechanisms involved in such actions and examined structural requirements of PtdIns-homologues to inhibit tumour cells in combination with bv-sPLA2. Renal cancer cells were treated with bv-sPLA2 alone or in combination with PtdIns-homologues. Inhibitory effects on [3H] thymidine incorporation and intracellular signal transduction pathways were tested. Reaction products generated by bv-sPLA2 interaction with PtdIns(3,4)P2 were identified by mass spectrometry. Among the tested PtdIns-homologues those with a phosphate esterified to position 3 of the inositol head group, were most efficient in cooperating with bv-sPLA2 to block tumour cell proliferation. Growth inhibition induced by the combined action of bv-sPLA2 with either PtdIns(3,4)bisphosphate or PtdIns(3,4,5)trisphosphate were synergistic and accompanied by potent cell lysis. In contrast, PtdIns, which lacked the phosphate group at position 3, failed to promote synergistic growth inhibition. The combined administration of PtdIns(3,4)P2 and bv-sPLA2 abrogated signal transduction mediated by extracellular signal regulated kinase 1 and 2 and prevented transduction of survival signals mediated by protein kinase B. Surface expression of the epidermal growth factor (EGF)-receptor was reduced after PtdIns(3,4)P2-bv-sPLA2 administration and associated with a blockade of EGF-induced signalling. In addition, mass spectroscopy revealed that bv-sPLA2 cleaves PtdIns(3,4)P2 to generate lyso-PtdIns(3,4)P2. In conclusion, we suggest that the cytotoxic activity mediated by PtdIns(3,4)P2 and bv-sPLA2 is due to cell death that results from disruption of membrane integrity, abrogation of signal transduction and the generation of cytotoxic lyso-PtdIns(3,4)P2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andresen TL, Jensen SS, Madsen R, Jorgensen K (2005) Synthesis and biological activity of anticancer ether lipids that are specifically released by phospholipase A2 in tumor tissue. J Med Chem 48:7305–7314

    Article  CAS  PubMed  Google Scholar 

  2. Asakuma J, Sumitomo M, Asano T, Hayakawa M (2003) Selective Akt inactivation and tumor necrosis actor-related apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel. Cancer Res 63:1365–1370

    CAS  PubMed  Google Scholar 

  3. Ashagbley A, Samadder P, Bittman R, Erukulla RK, Byun HS, Arthur G (1996) Synthesis of ether-linked analogues of lysophosphatidate and their effect on the proliferation of human epithelial cancer cells in vitro. Anticancer Res 16:1813–1818

    CAS  PubMed  Google Scholar 

  4. Choi YA, Lim HK, Kim JR, Lee CH, Kim YJ, Kang SS, Baek SH (2004) Group IB secretory phospholipase A2 promotes matrix metalloproteinase-2-mediated cell migration via the phosphatidylinositol 3-kinase and Akt pathway. J Biol Chem 279:36579–36585

    Article  CAS  PubMed  Google Scholar 

  5. Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, Pepe S, Bianco AR, Agrawal S, Mendelsohn J, Tortora G (1998) Cooperative inhibition of renal cancer growth by anti-epidermal growth factor receptor antibody and protein kinase A antisense oligonucleotide. J Natl Cancer Inst 90:1087–1094

    Article  CAS  PubMed  Google Scholar 

  6. Coffer PJ, Jin J, Woodgett JR (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335(Pt 1):1–13

    CAS  PubMed  Google Scholar 

  7. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  CAS  PubMed  Google Scholar 

  8. Davis RJ (1993) The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268:14553–14556

    CAS  PubMed  Google Scholar 

  9. Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

    CAS  PubMed  Google Scholar 

  10. Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226

    CAS  PubMed  Google Scholar 

  11. Folch J, Lees M, Sloane Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  12. Fonteh AN, Atsumi G, LaPorte T, Chilton FH (2000) Secretory phospholipase A2 receptor-mediated activation of cytosolic phospholipase A2 in murine bone marrow-derived mast cells. J Immunol 165:2773–2782

    CAS  PubMed  Google Scholar 

  13. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88:435–437

    Article  CAS  PubMed  Google Scholar 

  14. Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668

    Article  CAS  PubMed  Google Scholar 

  15. Graler MH, Goetzl EJ (2002) Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochim Biophys Acta 1582:168–174

    CAS  PubMed  Google Scholar 

  16. Hernandez M, Burillo SL, Crespo MS, Nieto ML (1998) Secretory phospholipase A2 activates the cascade of mitogen-activated protein kinases and cytosolic phospholipase A2 in the human astrocytoma cell line 1321N1. J Biol Chem 273:606–612

    Article  CAS  PubMed  Google Scholar 

  17. Horiguchi A, Oya M, Marumo K, Murai M (2002) STAT3, but not ERKs, mediates the IL-6-induced proliferation of renal cancer cells, ACHN and 769P. Kidney Int 61:926–938

    Article  CAS  PubMed  Google Scholar 

  18. Huwiler A, Staudt G, Kramer RM, Pfeilschifter J (1997) Cross-talk between secretory phospholipase A2 and cytosolic phospholipase A2 in rat renal mesangial cells. Biochim Biophys Acta 1348:257–272

    CAS  PubMed  Google Scholar 

  19. Kabarowski JH, Xu Y, Witte ON (2002) Lysophosphatidylcholine as a ligand for immunoregulation. Biochem Pharmacol 64:161–167

    Article  CAS  PubMed  Google Scholar 

  20. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, Hay N (1997) The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11:701–713

    Article  CAS  PubMed  Google Scholar 

  22. Kinoshita E, Handa N, Hanada K, Kajiyama G, Sugiyama M (1997) Activation of MAP kinase cascade induced by human pancreatic phospholipase A2 in a human pancreatic cancer cell line. FEBS Lett 407:343–346

    Article  CAS  PubMed  Google Scholar 

  23. Klippel A, Escobedo MA, Wachowicz MS, Apell G, Brown TW, Giedlin MA, Kavanaugh WM, Williams LT (1998) Activation of phosphatidylinositol 3-kinase is sufficient for cell cycle entry and promotes cellular changes characteristic of oncogenic transformation. Mol Cell Biol 18:5699–5711

    CAS  PubMed  Google Scholar 

  24. Klippel A, Kavanaugh WM, Pot D, Williams LT (1997) A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 17:338–344

    CAS  PubMed  Google Scholar 

  25. Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6:827–837

    Article  CAS  PubMed  Google Scholar 

  26. Kudo I, Murakami M (2002) Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat 68-9:3–58

    Article  Google Scholar 

  27. Kundu GC, Mukherjee AB (1997) Evidence that porcine pancreatic phospholipase A2 via its high affinity receptor stimulates extracellular matrix invasion by normal and cancer cells. J Biol Chem 272:2346–2353

    Article  CAS  PubMed  Google Scholar 

  28. Lambeau G, Lazdunski M (1999) Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol Sci 20:162–170

    Article  CAS  PubMed  Google Scholar 

  29. Lambeau G, Schmid-Alliana A, Lazdunski M, Barhanin J (1990) Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. J Biol Chem 265:9526–9532

    CAS  PubMed  Google Scholar 

  30. Pages G, Lenormand P, L’Allemain G, Chambard JC, Meloche S, Pouyssegur J (1993) Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA 90:8319–8323

    Article  CAS  PubMed  Google Scholar 

  31. Park DW, Kim JR, Kim SY, Sonn JK, Bang OS, Kang SS, Kim JH, Baek SH (2003) Akt as a mediator of secretory phospholipase A2 receptor-involved inducible nitric oxide synthase expression. J Immunol 170:2093–2099

    CAS  PubMed  Google Scholar 

  32. Patel PH, Chaganti RS, Motzer RJ (2006) Targeted therapy for metastatic renal cell carcinoma. Br J Cancer 94:614–619

    CAS  PubMed  Google Scholar 

  33. Payrastre B, Missy K, Giuriato S, Bodin S, Plantavid M, Gratacap M (2001) Phosphoinositides: key players in cell signalling, in time and space. Cell Signal 13:377–387

    Article  CAS  PubMed  Google Scholar 

  34. Pouyssegur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 64:755–763

    Article  CAS  PubMed  Google Scholar 

  35. Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Thurnher M (2006) Antitumor action and immune activation through cooperation of bee venom secretory phospholipase A2 and phosphatidylinositol-(3,4)-bisphosphate. Cancer Immunol Immunother 55:1347–1388

    Article  Google Scholar 

  36. Ruiter GA, Verheij M, Zerp SF, Moolenaar WH, Van Blitterswijk WJ (2002) Submicromolar doses of alkyl-lysophospholipids induce rapid internalization, but not activation, of epidermal growth factor receptor and concomitant MAPK/ERK activation in A431 cells. Int J Cancer 102:343–350

    Article  CAS  PubMed  Google Scholar 

  37. Ruiter GA, Verheij M, Zerp SF, van Blitterswijk WJ (2001) Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. Int J Radiat Oncol Biol Phys 49:415–419

    Article  CAS  PubMed  Google Scholar 

  38. Ruiter GA, Zerp SF, Bartelink H, van Blitterswijk WJ, Verheij M (2003) Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs 14:167–173

    Article  CAS  PubMed  Google Scholar 

  39. Samadder P, Bittman R, Byun HS, Arthur G (2004) Synthesis and use of novel ether phospholipid enantiomers to probe the molecular basis of the antitumor effects of alkyllysophospholipids: correlation of differential activation of c-Jun NH(2)-terminal protein kinase with antiproliferative effects in neuronal tumor cells. J Med Chem 47:2710–2713

    Article  CAS  PubMed  Google Scholar 

  40. Sion-Vardy N, Vardy D, Rodeck U, Kari C, Levin RM, Malkowicz SB (1995) Antiproliferative effects of tyrosine kinase inhibitors (tyrphostins) on human bladder and renal carcinoma cells. J Surg Res 59:675–680

    Article  CAS  PubMed  Google Scholar 

  41. Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta 1488:1–19

    CAS  PubMed  Google Scholar 

  42. Staehler M, Rohrmann K, Haseke N, Stief CG, Siebels M (2005) Targeted agents for the treatment of advanced renal cell carcinoma. Curr Drug Targets 6:835–846

    Article  CAS  PubMed  Google Scholar 

  43. Toker A (2002) Phosphoinositides and signal transduction. Cell Mol Life Sci 59:761–779

    Article  CAS  PubMed  Google Scholar 

  44. Valentin E, Lambeau G (2000) What can venom phospholipases A(2) tell us about the functional diversity of mammalian secreted phospholipases A(2)? Biochimie 82:815–831

    Article  CAS  PubMed  Google Scholar 

  45. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  CAS  PubMed  Google Scholar 

  46. Wenk MR, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF, Nussbaum RL, Cline GW, Shulman GI, McMurray W, De Camilli P (2003) Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol 21:813–817

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Putz.

Additional information

This work was supported by a grant to MT of the kompetenzzentrum medizin tirol (kmt), a centre of excellence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putz, T., Ramoner, R., Gander, H. et al. Bee venom secretory phospholipase A2 and phosphatidylinositol-homologues cooperatively disrupt membrane integrity, abrogate signal transduction and inhibit proliferation of renal cancer cells. Cancer Immunol Immunother 56, 627–640 (2007). https://doi.org/10.1007/s00262-006-0220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0220-0

Keywords

Navigation