Skip to main content
Log in

In vitro priming of tumor-specific cytotoxic T lymphocytes using allogeneic dendritic cells derived from the human MUTZ-3 cell line

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The adoptive transfer of in vitro-induced and expanded tumor-specific cytotoxic T lymphocytes (CTL) presents a promising immunotherapeutic approach for the treatment of cancer. The in vitro induction of tumor-reactive CTL requires repeated stimulation of CTL precursors with dendritic cells (DC). To circumvent problems like scarcity of blood DC precursors and donor variability, it would be attractive to use DC from a non-autologous, unlimited source. DCs derived from the human acute myeloid leukemia (AML) cell line MUTZ-3 are attractive candidates since these DCs closely resemble monocyte-derived DC (MoDC) in terms of phenotype and T cell stimulatory capacity. Here we demonstrate that functional CTL clones could be generated against multiple tumor-associated antigens, i.e., human telomerase reverse transcriptase (hTERT), ErbB3-binding protein-1 (Ebp1), carcinoembryonic antigen (CEA) and Her-2/neu, by stimulating CD8β+ CTL precursors with peptide-loaded allogeneic, HLA-A2-matched MUTZ-3-derived DC. A consistent induction capacity, as determined by MHC tetramer-binding, was found in multiple donors and comparable to autologous peptide-loaded MoDC. Functional characterization at the clonal level revealed the priming of CTL that recognized endogenously processed epitopes on tumor cell lines in an HLA-A2-restricted fashion. Our data indicate that MUTZ-3-derived DC can be used as stimulator cells for in vitro priming and expansion of functional TAA-specific effector CTL. MUTZ-3-derived DCs thus represent a ready and standardized source of allogeneic DC to generate CTL for therapeutic adoptive transfer strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

CEA:

Carcinoembryonic antigen

CTL:

Cytotoxic T lymphocytes

DC:

Dendritic cell

GFP:

Green fluorescent protein

hTERT:

Human telomerase reverse transcriptase

MoDC:

Monocyte-derived dendritic cell

ΔNGFR:

Truncated form of nerve growth factor receptor

PBMC:

Peripheral blood mononuclear cell

PHA:

Phytohemagglutin

TIL:

Tumor-infiltrating lymphocyte

Tm:

Tetramer

References

  1. Alexander-Miller MA, Leggatt GR, Berzofsky JA (1996) Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc Natl Acad Sci USA 93:4102–4107

    Article  PubMed  CAS  Google Scholar 

  2. Bender A, Sapp M, Schuler G et al (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 196:121–135

    Article  PubMed  CAS  Google Scholar 

  3. Betts MR, Brenchley JM, Price DA et al (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281:65–78

    Article  PubMed  CAS  Google Scholar 

  4. Carbone FR, Moore MW, Sheil JM et al (1988) Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med 167:1767–1779

    Article  PubMed  CAS  Google Scholar 

  5. Crowley NJ, Slingluff CL Jr, Darrow TL et al (1990) Generation of human autologous melanoma-specific cytotoxic T-cells using HLA-A2-matched allogeneic melanomas. Cancer Res 50:492–498

    PubMed  CAS  Google Scholar 

  6. Dudley ME, Nishimura MI, Holt AK et al (1999) Antitumor immunization with a minimal peptide epitope (G9-209-2M) leads to a functionally heterogeneous CTL response. J Immunother 22:288–298

    Article  PubMed  CAS  Google Scholar 

  7. Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  PubMed  CAS  Google Scholar 

  8. Figdor CG, de Vries IJ, Lesterhuis WJ et al (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480

    Article  PubMed  CAS  Google Scholar 

  9. Fonteneau JF, Larsson M, Somersan S et al (2001) Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells. J Immunol Methods 258:111–126

    Article  PubMed  CAS  Google Scholar 

  10. Hamann D, Roos MT, van Lier RA (1999) Faces and phases of human CD8 T-cell development. Immunol Today 20:177–180

    Article  PubMed  CAS  Google Scholar 

  11. Heemskerk MH, Hooijberg E, Ruizendaal JJ et al (1999) Enrichment of an antigen-specific T cell response by retrovirally transduced human dendritic cells. Cell Immunol 195:10–17

    Article  PubMed  CAS  Google Scholar 

  12. Hooijberg E, Ruizendaal JJ, Snijders PJ et al (2000) Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. J Immunol 165:4239–4245

    PubMed  CAS  Google Scholar 

  13. Hu ZB, Ma W, Zaborski M et al (1996) Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3. Leukemia 10:1025–1040

    PubMed  CAS  Google Scholar 

  14. Jameson SC, Hogquist KA Bevan MJ (1995) Positive selection of thymocytes. Annu Rev Immunol 13:93–126

    Article  PubMed  CAS  Google Scholar 

  15. Jochmus I, Osen W, Altmann A et al (1997) Specificity of human cytotoxic T lymphocytes induced by a human papillomavirus type 16 E7-derived peptide. J Gen Virol 78(Pt 7):1689–1695

    PubMed  CAS  Google Scholar 

  16. Kast WM, Offringa R, Peters PJ et al (1989) Eradication of adenovirus E1-induced tumors by E1A-specific cytotoxic T lymphocytes. Cell 59:603–614

    Article  PubMed  CAS  Google Scholar 

  17. Kawashima I, Hudson SJ, Tsai V et al (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1–14

    Article  PubMed  CAS  Google Scholar 

  18. Lustgarten J, Dominguez AL, Cuadros C (2004) The CD8+ T cell repertoire against Her-2/neu antigens in neu transgenic mice is of low avidity with antitumor activity. Eur J Immunol 34:752–761

    Article  PubMed  CAS  Google Scholar 

  19. Masterson AJ, Sombroek CC, De Gruijl TD et al (2002) MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+ precursors. Blood 100:701–703

    Article  PubMed  CAS  Google Scholar 

  20. Morgan DJ, Kreuwel HT, Fleck S et al (1998) Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160:643–651

    PubMed  CAS  Google Scholar 

  21. Nestle FO, Alijagic S, Gilliet M et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332

    Article  PubMed  CAS  Google Scholar 

  22. Nestle FO, Banchereau J, Hart D (2001) Dendritic cells: on the move from bench to bedside. Nat Med 7:761–765

    Article  PubMed  CAS  Google Scholar 

  23. Oelke M, Moehrle U, Chen JL et al (2000) Generation and purification of CD8+ melan-A-specific cytotoxic T lymphocytes for adoptive transfer in tumor immunotherapy. Clin Cancer Res 6:1997–2005

    PubMed  CAS  Google Scholar 

  24. Peiper M, Goedegebuure PS, Alldinger I et al (2002) Comparison of various sources of antigen-presenting cells for the generation of GP2-tumor peptide specific cytotoxic T-lymphocytes. Anticancer Res 22:3357–3363

    PubMed  CAS  Google Scholar 

  25. Prevost-Blondel A, Zimmermann C, Stemmer C et al (1998) Tumor-infiltrating lymphocytes exhibiting high ex vivo cytolytic activity fail to prevent murine melanoma tumor growth in vivo. J Immunol 161:2187–2194

    PubMed  CAS  Google Scholar 

  26. Rosenberg SA, Yang JC, Schwartzentruber DJ et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327

    Article  PubMed  CAS  Google Scholar 

  27. Rubio V, Stuge TB, Singh N et al (2003) Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 9:1377–1382

    Article  PubMed  CAS  Google Scholar 

  28. Sallusto F, Lenig D, Forster R et al (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  PubMed  CAS  Google Scholar 

  29. Scardino A, Gross DA, Alves P et al (2002) HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 168:5900–5906

    PubMed  CAS  Google Scholar 

  30. Schreurs MW, Scholten KB, Kueter EW et al (2003) In vitro generation and life span extension of human papillomavirus type 16-specific, healthy donor-derived CTL clones. J Immunol 171:2912–2921

    PubMed  CAS  Google Scholar 

  31. Schreurs MW, Kueter EW, Scholten KB et al (2005) Identification of a potential human telomerase reverse transcriptase-derived, HLA-A1-restricted cytotoxic T-lymphocyte epitope. Cancer Immunol Immunother 54:703–712

    Article  PubMed  CAS  Google Scholar 

  32. Thurner B, Haendle I, Roder C et al (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190:1669–1678

    Article  PubMed  CAS  Google Scholar 

  33. Tsai V, Kawashima I, Keogh E et al (1998) In vitro immunization and expansion of antigen-specific cytotoxic T lymphocytes for adoptive immunotherapy using peptide-pulsed dendritic cells. Crit Rev Immunol 18:65–75

    PubMed  CAS  Google Scholar 

  34. Tsang KY, Zaremba S, Nieroda CA et al (1995) Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87:982–990

    Article  PubMed  CAS  Google Scholar 

  35. Tsang KY, Zhu M, Even J et al (2001) The infection of human dendritic cells with recombinant avipox vectors expressing a costimulatory molecule transgene (CD80) to enhance the activation of antigen-specific cytolytic T cells. Cancer Res 61:7568–7576

    PubMed  CAS  Google Scholar 

  36. Van Parijs L, Abbas AK (1998) Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280:243–248

    Article  PubMed  Google Scholar 

  37. Vermorken JB, Claessen AM, van Tinteren H et al (1999) Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 353:345–350

    Article  PubMed  CAS  Google Scholar 

  38. Vonderheide RH, Hahn WC, Schultze JL et al (1999) The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10:673–679

    Article  PubMed  CAS  Google Scholar 

  39. Wentworth PA, Celis E, Crimi C et al (1995) In vitro induction of primary, antigen-specific CTL from human peripheral blood mononuclear cells stimulated with synthetic peptides. Mol Immunol 32:603–612

    Article  PubMed  CAS  Google Scholar 

  40. Xia X, Lessor TJ, Zhang Y et al (2001) Analysis of the expression pattern of Ebp1, an ErbB-3-binding protein. Biochem Biophys Res Commun 289:240–244

    Article  PubMed  CAS  Google Scholar 

  41. Yee C, Thompson JA, Byrd D et al (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168–16173

    Article  PubMed  CAS  Google Scholar 

  42. Yoo JY, Wang XW, Rishi AK et al (2000) Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin. Br J Cancer 82:683–690

    Article  PubMed  CAS  Google Scholar 

  43. Yssel H, de Vries JE, Koken M et al (1984) Serum-free medium for generation and propagation of functional human cytotoxic and helper T cell clones. J Immunol Methods 72:219–227

    Article  PubMed  CAS  Google Scholar 

  44. Zeh HJ, III Perry-Lalley D, Dudley ME et al (1999) High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 162:989–994

    PubMed  CAS  Google Scholar 

  45. Zhu MZ, Marshall J, Cole D et al (2000) Specific cytolytic T-cell responses to human CEA from patients immunized with recombinant avipox-CEA vaccine. Clin Cancer Res 6:24–33

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank NEMOD Biotherapeutics for their financial support and the Maurits & Anna de Kock Foundation for financial support in the purchase of an HPLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rik J. Scheper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santegoets, S.J., Schreurs, M.W., Masterson, A.J. et al. In vitro priming of tumor-specific cytotoxic T lymphocytes using allogeneic dendritic cells derived from the human MUTZ-3 cell line. Cancer Immunol Immunother 55, 1480–1490 (2006). https://doi.org/10.1007/s00262-006-0142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0142-x

Keywords

Navigation