Skip to main content

Advertisement

Log in

Clinical calculator based on CT and clinicopathologic characteristics predicts short-term prognosis following resection of microsatellite-stabilized diffuse gastric cancer

  • Hollow Organ GI
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Although microsatellite stability/Epithelial-mesenchymal transition (MSS/EMT) subtypes have been reported in multiple cancer prognosis studies, strong confounding factors between MSS/EMT (usually with Lauren’s diffuse phenotype) and diffuse gastric cancer (GC) may obscure the independent prognostic value of diffuse GC. Additionally, recent studies suggest a strong correlation between mural stratification based on CT and diffuse GC. This study aims to investigate potential prognostic factors of MSS diffuse GC using mural stratification and to develop a risk assessment model.

Methods

This retrospective study included 131 patients with MSS diffuse GC who underwent radical surgery. Univariate and multivariate Cox proportional hazards regression analysis was used to identify model predictors and construct a nomogram for overall survival (OS) and recurrence-free survival (RFS) risks. The model’s performance was evaluated using ROC, accuracy, and C-index. Internal validation of the model was conducted using the bootstrap resampling method.

Results

Among 131 cases, 60 cases (45.8%) exhibited grade 2 mural stratification, which correlated with a poorer tumor prognosis and a more invasive phenotype. Furthermore, a nomogram for predicting OS and RFS prognosis was established based on multivariate results (age, extranodal invasion, mural stratification, and/or P53). The nomogram demonstrated excellent performance, with an AUC of 0.859 (95% CI 0.794–0.924) for OS and 0.859 (95% CI 0.789–0.929) for RFS. Internal validation using 1000 bootstrap samples yielded AUC values of 0.845 and 0.846 for OS and RFS, respectively.

Conclusion

Grade 2 mural stratification based on CT imaging revealed a more aggressive invasive phenotype, characterized by increased LN metastasis, higher rates of peritoneal metastasis, and a poorer short-term prognosis. Furthermore, the CT phenotype–based nomogram demonstrates favorable discrimination and calibration, enabling convenient individual short-term prognostic evaluation following resection of MSS diffuse GC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACRG :

Asian Cancer Research Group

EMT :

Epithelial-mesenchymal transition

GC :

Gastric cancer

LN :

Lymph node

MSS :

Microsatellite stability

PM :

Peritoneal metastasis

SRCC :

Signet ring cell carcinoma

TCGA :

The Cancer Genome Atlas

References

  1. Ajani JA, D’Amico TA, Bentrem DJ, et al. Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022;20(2):167-192.

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Zhou Q, Wang H, et al. Predicting Peritoneal Dissemination of Gastric Cancer in the Era of Precision Medicine: Molecular Characterization and Biomarkers. Cancers (Basel). 2020;12(8):2236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marrelli D, Marano L, Ambrosio MR, et al. Immunohistochemical Markers of the Epithelial-to-Mesenchymal Transition (EMT) Are Related to Extensive Lymph Nodal Spread, Peritoneal Dissemination, and Poor Prognosis in the Microsatellite-Stable Diffuse Histotype of Gastric Cancer. Cancers (Basel). 2022;14(24):6023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marrelli D, Polom K, Neri A, Roviello F. Clinical impact of molecular classifications in gastric cancer. Updates Surg. 2018;70(2):225-232.

    Article  PubMed  Google Scholar 

  5. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202-209.

    Article  Google Scholar 

  6. Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449-456.

    Article  CAS  PubMed  Google Scholar 

  7. Benson AB 3rd. Data acquisition, tumor heterogeneity and precision medicine: future challenges for oncologic comparative effectiveness research. J Comp Eff Res. 2013;2(1):17-21.

    Article  PubMed  Google Scholar 

  8. Furukawa K, Hatakeyama K, Terashima M, et al. Molecular classification of gastric cancer predicts survival in patients undergoing radical gastrectomy based on project HOPE. Gastric Cancer. 2022;25(1):138-148.

    Article  CAS  PubMed  Google Scholar 

  9. Marrelli D, Polom K, Pascale V, et al. Strong Prognostic Value of Microsatellite Instability in Intestinal Type Non-cardia Gastric Cancer. Ann Surg Oncol. 2016;23(3):943-950.

    Article  PubMed  Google Scholar 

  10. Oh SC, Sohn BH, Cheong JH, et al. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat Commun. 2018;9(1):1777.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nshizirungu JP, Bennis S, Mellouki I, et al. Reproduction of the Cancer Genome Atlas (TCGA) and Asian Cancer Research Group (ACRG) Gastric Cancer Molecular Classifications and Their Association with Clinicopathological Characteristics and Overall Survival in Moroccan Patients. Dis Markers. 2021; 2021:9980410.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu X, Meltzer SJ. Gastric Cancer in the Era of Precision Medicine. Cell Mol Gastroenterol Hepatol. 2017;3(3):348-358.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Birkman EM, Mansuri N, Kurki S, et al. Gastric cancer: immunohistochemical classification of molecular subtypes and their association with clinicopathological characteristics. Virchows Arch. 2018;472(3):369-382.

    Article  CAS  PubMed  Google Scholar 

  14. Huang SC, Ng KF, Yeh TS, et al. Subtraction of Epstein-Barr virus and microsatellite instability genotypes from the Lauren histotypes: Combined molecular and histologic subtyping with clinicopathological and prognostic significance validated in a cohort of 1,248 cases. Int J Cancer. 2019;145(12):3218-3230.

    Article  CAS  PubMed  Google Scholar 

  15. Lee JH, Park MS, Kim KW, et al. Advanced gastric carcinoma with signet ring cell carcinoma versus non-signet ring cell carcinoma: differentiation with multidetector CT. J Comput Assist Tomogr. 2006;30(6):880-884.

    Article  PubMed  Google Scholar 

  16. Tsurumaru D, Miyasaka M, Muraki T, et al. Diffuse-type gastric cancer: specific enhancement pattern on multiphasic contrast-enhanced computed tomography. Jpn J Radiol. 2017;35(6):289-295.

    Article  PubMed  Google Scholar 

  17. Cha DI, Lee J, Jeong WK, et al. Prediction of epithelial-to-mesenchymal transition molecular subtype using CT in gastric cancer. Eur Radiol. 2022;32(1):1-11.

    Article  PubMed  Google Scholar 

  18. Yin XD, Huang WB, Lü CY, Zhang L, Wang LW, Xie GH. A preliminary study on correlations of triple-phase multi-slice CT scan with histological differentiation and intratumoral microvascular/lymphatic invasion in gastric cancer. Chin Med J (Engl). 2011;124(3):347-351.

    PubMed  Google Scholar 

  19. PHILIPPE N, TONI L, GERT D H, et al. Can extracapsular lymph node involvement be a tool to fine-tune pN1 for adenocarcinoma of the oesophagus and gastro-oesophageal junction in the Union Internationale contre le Cancer (UICC) TNM 7th edition? Eur J Cardiothorac Surg, 2014, 45(6):1001-1010

    Article  Google Scholar 

  20. Liu P, Ding P, Wu H, et al. Prediction of occult peritoneal metastases or positive cytology using CT in gastric cancer. Eur Radiol. 2023;https://doi.org/10.1007/s00330-023-09854-z.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774-781.

    Article  CAS  PubMed  Google Scholar 

  22. Yang L, Shi G, Li Y, et al. Effect of gastric cavity filling degree on tumor thickness measurement in advanced gastric cancer. China Medical Imaging Technology, 2017,33(7):1002-1006.

    Google Scholar 

  23. Giuliani A, Caporale A, Di Bari M, et a1. Maximum gastric cancer diameter as a prognostic indicator: Univariate and multivariate analysis, J Exp Clin Cancer Res, 2003. 22(4):531-538.

    CAS  PubMed  Google Scholar 

  24. Japanese Gastric Cancer Association. Japanese Gastric Cancer Treatment Guidelines 2021 (6th edition). Gastric Cancer. 2023;26(1):1-25.

    Article  Google Scholar 

  25. Salem ME, Bodor JN, Puccini A, et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int J Cancer. 2020;147(10):2948-2956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Z, Jia Y, Zhu H, et al. Genomic landscape of microsatellite instability in Chinese tumors: A comparison of Chinese and TCGA cohorts. Int J Cancer. 2022;151(8):1382-1393.

    Article  CAS  PubMed  Google Scholar 

  27. Janjigian YY, Shitara K, Moehler M, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398(10294):27-40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim KM, Ahn AR, Park HS, et al. Clinical significance of p53 protein expression and TP53 variation status in colorectal cancer. BMC Cancer. 2022;22(1):940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chin FY, Leung HC, Yiu SM. Sequence assembly using next generation sequencing data--challenges and solutions. Sci China Life Sci. 2014;57(11):1140-1148.

    Article  CAS  PubMed  Google Scholar 

  30. Gao Y, Xie B, Liu R. Delivering noninvasive prenatal testing in a clinical setting using semiconductor sequencing platform. Sci China Life Sci. 2014;57(7):737-738.

    Article  PubMed  Google Scholar 

  31. Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011;14(2):101-112.

    Article  Google Scholar 

  32. Yasufuku I, Nunobe S, Ida S, et al. Conversion therapy for peritoneal lavage cytology-positive type 4 and large type 3 gastric cancer patients selected as candidates for R0 resection by diagnostic staging laparoscopy. Gastric Cancer. 2020;23(2):319-327.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 2020;12(9):674-687.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26(2):199-212.

    Article  PubMed  Google Scholar 

  35. Li F, Li S, Wang X, et al. To investigate the prognostic factors of stage I-II gastric cancer based on P53 mutation and tumor budding. Pathol Res Pract. 2022; 240:154195.

    Article  CAS  PubMed  Google Scholar 

  36. Kim KW, Kim N, Choi Y, et al. Different effects of p53 protein overexpression on the survival of gastric cancer patients according to Lauren histologic classification: a retrospective study. Gastric Cancer. 2021;24(4):844-857.

    Article  CAS  PubMed  Google Scholar 

  37. Lee DY, Park CS, Kim HS, Kim JY, Kim YC, Lee S. Maspin and p53 protein expression in gastric adenocarcinoma and its clinical applications. Appl Immunohistochem Mol Morphol. 2008;16(1):13-18.

    Article  CAS  PubMed  Google Scholar 

  38. Setia N, Agoston AT, Han HS, et al. A protein and mRNA expression-based classification of gastric cancer. Mod Pathol. 2016;29(7):772-784.

    Article  CAS  PubMed  Google Scholar 

  39. Babacan NA, Egilmez HR, Yücel B, et al. The prognostic value of UHRF-1 and p53 in gastric cancer. Saudi J Gastroenterol. 2016;22(1):25-29.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019;20(4):199-210.

    Article  CAS  PubMed  Google Scholar 

  41. Blandino G, Di Agostino S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. J Exp Clin Cancer Res. 2018;37(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang J. Current developments of targeting the p53 signaling pathway for cancer treatment. Pharmacol Ther. 2021; 220:107720.

    Article  CAS  PubMed  Google Scholar 

  43. Etoh T, Sasako M, Ishikawa K, Katai H, Sano T, Shimoda T. Extranodal metastasis is an indicator of poor prognosis in patients with gastric carcinoma. Br J Surg. 2006;93(3):369-373.

    Article  CAS  PubMed  Google Scholar 

  44. Lee IS, Kang HJ, Park YS, et al. Prognostic impact of extranodal extension in stage 1B gastric carcinomas. Surg Oncol. 2018;27(2):299-305.

    Article  PubMed  Google Scholar 

  45. Link H, Angele M, Schüller M, et al. Extra-capsular growth of lymph node metastasis correlates with poor prognosis and high SOX9 expression in gastric cancer. BMC Cancer. 2018;18(1):483.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Veronese N, Fassan M, Wood LD, et al. Extranodal Extension of Nodal Metastases Is a Poor Prognostic Indicator in Gastric Cancer: A Systematic Review and Meta-analysis. J Gastrointest Surg. 2016;20(10):1692-1698.

    Article  PubMed  Google Scholar 

  47. Tonouchi A, Sugano M, Tokunaga M, et al. Extra-perigastric Extranodal Metastasis is a Significant Prognostic Factor in Node-Positive Gastric Cancer. World J Surg. 2019;43(10):2499-2505.

    Article  PubMed  Google Scholar 

  48. Matsui H, Anno H, Uyama I, et al. Relatively small size linitis plastica of the stomach: multislice CT detection of tissue fibrosis. Abdom Imaging. 2007;32(6):694-697.

    Article  PubMed  Google Scholar 

  49. Nelen SD, Bosscha K, Lemmens VEPP, et al. Morbidity and mortality according to age following gastrectomy for gastric cancer. Br J Surg. 2018;105(9):1163-1170.

    Article  CAS  PubMed  Google Scholar 

  50. Liang YX, Deng JY, Guo HH, et al. Characteristics and prognosis of gastric cancer in patients aged ≥ 70 years. World J Gastroenterol. 2013;19(39):6568-6578.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Contributions: (I) Conception and design: Qun Zhao; (II) Administrative support: Qun Zhao; (III) Provision of study materials or patients: Pengpeng Liu, Ping’an Ding, Haotian Wu,Jiaxiang Wu, Peigang Yang, Yuan Tian, Honghai Guo; (IV) Collection and assembly of data: Pengpeng Liu, Ping’an Ding; (V) Data analysis and interpretation: Pengpeng Liu, Ping’an Ding; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Corresponding author

Correspondence to Qun Zhao.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of the Fourth Hospital of Hebei Medical University and conducted in accordance with the ethical standards of the Helsinki Declaration. All patients signed informed consent before surgery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 92 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Ding, P., Guo, H. et al. Clinical calculator based on CT and clinicopathologic characteristics predicts short-term prognosis following resection of microsatellite-stabilized diffuse gastric cancer. Abdom Radiol (2024). https://doi.org/10.1007/s00261-024-04350-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00261-024-04350-4

Keywords

Navigation