Skip to main content
Log in

PET/MRI in colorectal and anal cancers: an update

  • Special Section: PET/MR
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

A Correction to this article was published on 23 November 2023

This article has been updated

Abstract

Positron emission tomography (PET) in the era of personalized medicine has a unique role in the management of oncological patients and offers several advantages over standard anatomical imaging. However, the role of molecular imaging in lower GI malignancies has historically been limited due to suboptimal anatomical evaluation on the accompanying CT, as well as significant physiological 18F-flurodeoxyglucose (FDG) uptake in the bowel. In the last decade, technological advancements have made whole-body FDG-PET/MRI a feasible alternative to PET/CT and MRI for lower GI malignancies. PET/MRI combines the advantages of molecular imaging with excellent soft tissue contrast resolution. Hence, it constitutes a unique opportunity to improve the imaging of these cancers. FDG-PET/MRI has a potential role in initial diagnosis, assessment of local treatment response, and evaluation for metastatic disease. In this article, we review the recent literature on FDG-PET/MRI for colorectal and anal cancers; provide an example whole-body FDG-PET/MRI protocol; highlight potential interpretive pitfalls; and provide recommendations on particular clinical scenarios in which FDG-PET/MRI is likely to be most beneficial for these cancer types.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from SAR-DFP website

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Cancer Stat Facts: Colorectal Cancer. https://seer.cancer.gov/statfacts/html/colorect.html. Accessed on November 16th, 2022

  2. Cancer Stat Facts: Anal Cancer. https://seer.cancer.gov/statfacts/html/anus.html. Accessed on November 16th, 2022

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49.

    Article  PubMed  Google Scholar 

  4. Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M, et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N Engl J Med. 2022;386(25):2363-76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, et al. Anal Carcinoma, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16(7):852-71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Filippiadis DK, Velonakis G, Kelekis A, Sofocleous CT. The Role of Percutaneous Ablation in the Management of Colorectal Cancer Liver Metastatic Disease. Diagnostics (Basel). 2021;11(2).

  7. Jayaprakasam VS, Paroder V, Schöder H. Variants and Pitfalls in PET/CT Imaging of Gastrointestinal Cancers. Semin Nucl Med. 2021;51(5):485-501.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tahtabasi M, Erturk SM, Basak M. Comparison of MRI and 18F-FDG PET/CT in the Liver Metastases of Gastrointestinal and Pancreaticobiliary Tumors. Sisli Etfal Hastan Tip Bul. 2021;55(1):12-7.

    PubMed  PubMed Central  Google Scholar 

  9. Mercury Study Group. Diagnostic accuracy of preoperative magnetic resonance imaging in predicting curative resection of rectal cancer: prospective observational study. BMJ. 2006;333(7572):779.

    Article  PubMed Central  Google Scholar 

  10. Mercury Study Group. Extramural depth of tumor invasion at thin-section MR in patients with rectal cancer: results of the MERCURY study. Radiology. 2007;243(1):132-9.

    Article  Google Scholar 

  11. Bugg WG, Andreou AK, Biswas D, Toms AP, Williams SM. The prognostic significance of MRI-detected extramural venous invasion in rectal carcinoma. Clin Radiol. 2014;69(6):619-23.

    Article  CAS  PubMed  Google Scholar 

  12. Rao S, Guren MG, Khan K, Brown G, Renehan AG, Steigen SE, et al. Anal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up(☆). Ann Oncol. 2021;32(9):1087-100.

    Article  CAS  PubMed  Google Scholar 

  13. Prezzi D, Mandegaran R, Gourtsoyianni S, Owczarczyk K, Gaya A, Glynne-Jones R, et al. The impact of MRI sequence on tumour staging and gross tumour volume delineation in squamous cell carcinoma of the anal canal. Eur Radiol. 2018;28(4):1512-9.

    Article  PubMed  Google Scholar 

  14. Kochhar R, Renehan AG, Mullan D, Chakrabarty B, Saunders MP, Carrington BM. The assessment of local response using magnetic resonance imaging at 3- and 6-month post chemoradiotherapy in patients with anal cancer. Eur Radiol. 2017;27(2):607-17.

    Article  PubMed  Google Scholar 

  15. Overcast WB, Davis KM, Ho CY, Hutchins GD, Green MA, Graner BD, et al. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep. 2021;23(3):34.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Berzaczy D, Fueger B, Hoeller C, Haug AR, Staudenherz A, Berzaczy G, et al. Whole-Body [(18)F]FDG-PET/MRI vs. [(18)F]FDG-PET/CT in Malignant Melanoma. Mol Imaging Biol. 2020;22(3):739-44.

    Article  CAS  PubMed  Google Scholar 

  17. Mulé S, Reizine E, Blanc-Durand P, Baranes L, Zerbib P, Burns R, et al. Whole-Body Functional MRI and PET/MRI in Multiple Myeloma. Cancers (Basel). 2020;12(11).

    Article  Google Scholar 

  18. Mayerhoefer ME, Archibald SJ, Messiou C, Staudenherz A, Berzaczy D, Schöder H. MRI and PET/MRI in hematologic malignancies. J Magn Reson Imaging. 2020;51(5):1325-35.

    Article  PubMed  Google Scholar 

  19. Paspulati RM, Partovi S, Herrmann KA, Krishnamurthi S, Delaney CP, Nguyen NC. Comparison of hybrid FDG PET/MRI compared with PET/CT in colorectal cancer staging and restaging: a pilot study. Abdom Imaging. 2015;40(6):1415-25.

    Article  PubMed  Google Scholar 

  20. Furtado FS, Suarez-Weiss KE, Vangel M, Clark JW, Cusack JC, Hong T, et al. Clinical impact of PET/MRI in oligometastatic colorectal cancer. Br J Cancer. 2021;125(7):975-82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yasuda S, Takechi M, Ono M, Miyatake Y, Itoh M, Kojima T, et al. The effect of glucagon on FDG uptake in skeletal muscle. Tokai J Exp Clin Med. 2012;37(1):11-3.

    CAS  PubMed  Google Scholar 

  22. Fraum TJ, Ma J, Jhaveri K, Nepal P, Lall C, Costello J, et al. The optimized rectal cancer MRI protocol: choosing the right sequences, sequence parameters, and preparatory strategies. Abdom Radiol (NY). 2023.

  23. Jayaprakasam VS, Javed-Tayyab S, Gangai N, Zheng J, Capanu M, Bates DDB, et al. Does microenema administration improve the quality of DWI sequences in rectal MRI? Abdom Radiol (NY). 2021;46(3):858-66.

    Article  PubMed  Google Scholar 

  24. Plodeck V, Rahbari NN, Weitz J, Radosa CG, Laniado M, Hoffmann R-T, et al. FDG-PET/MRI in patients with pelvic recurrence of rectal cancer: first clinical experiences. European Radiology. 2019;29(1):422-8.

    Article  PubMed  Google Scholar 

  25. Kang B, Lee JM, Song YS, Woo S, Hur BY, Jeon JH, et al. Added Value of Integrated Whole-Body PET/MRI for Evaluation of Colorectal Cancer: Comparison With Contrast-Enhanced MDCT. AJR Am J Roentgenol. 2016;206(1):W10-20.

    Article  PubMed  Google Scholar 

  26. Seto S, Tsujikawa T, Sawai K, Kurebayashi H, Morikawa M, Okazawa H, et al. Feasibility of [18F]FDG PET/MRI with Early-Delayed and Extended PET as One-Stop Imaging for Staging and Predicting Metastasis in Rectal Cancer. Oncology. 2022;100(4):212-20.

    Article  CAS  PubMed  Google Scholar 

  27. Rectal Cancer PET/MRI Staging Protocol for Siemens mMR & GE SIGNA. Society of Abdominal Radiology Rectal and Anal Cancer Disease-Focussed Panel. https://abdominalradiology.org/wp-content/uploads/2021/01/PMR-Rectal-Cancer-Protocols-Siemens-GE-v3.pdf. Accessed Novemebr 20th, 2022.

  28. Lake ST, Greene KL, Westphalen AC, Behr SC, Zagoria R, Small EJ, et al. Optimal MRI sequences for (68)Ga-PSMA-11 PET/MRI in evaluation of biochemically recurrent prostate cancer. EJNMMI Res. 2017;7(1):77.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rutegård MK, Båtsman M, Axelsson J, Brynolfsson P, Brännström F, Rutegård J, et al. PET/MRI and PET/CT hybrid imaging of rectal cancer - description and initial observations from the RECTOPET (REctal Cancer trial on PET/MRI/CT) study. Cancer Imaging. 2019;19(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bailey JJ, Jordan EJ, Burke C, Ohliger MA, Wang ZJ, Van Loon K, et al. Does Extended PET Acquisition in PET/MRI Rectal Cancer Staging Improve Results? AJR Am J Roentgenol. 2018;211(4):896-900.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maffione AM, Chondrogiannis S, Capirci C, Galeotti F, Fornasiero A, Crepaldi G, et al. Early prediction of response by (1)(8)F-FDG PET/CT during preoperative therapy in locally advanced rectal cancer: a systematic review. Eur J Surg Oncol. 2014;40(10):1186-94.

    Article  CAS  PubMed  Google Scholar 

  32. Bang JI, Ha S, Kang SB, Lee KW, Lee HS, Kim JS, et al. Prediction of neoadjuvant radiation chemotherapy response and survival using pretreatment [(18)F]FDG PET/CT scans in locally advanced rectal cancer. Eur J Nucl Med Mol Imaging. 2016;43(3):422-31.

    Article  CAS  PubMed  Google Scholar 

  33. Wiesmüller M, Quick HH, Navalpakkam B, Lell MM, Uder M, Ritt P, et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging. 2013;40(1):12-21.

    Article  PubMed  Google Scholar 

  34. Jeong JH, Cho IH, Chun KA, Kong EJ, Kwon SD, Kim JH. Correlation Between Apparent Diffusion Coefficients and Standardized Uptake Values in Hybrid (18)F-FDG PET/MR: Preliminary Results in Rectal Cancer. Nucl Med Mol Imaging. 2016;50(2):150-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bailey DL, Barthel H, Beyer T, Boellaard R, Gückel B, Hellwig D, et al. Summary report of the First International Workshop on PET/MR imaging, March 19-23, 2012, Tübingen, Germany. Mol Imaging Biol. 2013;15(4):361-71.

    Article  PubMed  Google Scholar 

  36. Afaq A, Faul D, Chebrolu VV, Wan S, Hope TA, Haibach PV, et al. Pitfalls on PET/MRI. Seminars in Nuclear Medicine. 2021;51(5):529-39.

    Article  PubMed  Google Scholar 

  37. Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, et al. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI. J Nucl Med. 2018;59(5):852-8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jang H, Liu F, Bradshaw T, McMillan AB. Rapid dual-echo ramped hybrid encoding MR-based attenuation correction (dRHE-MRAC) for PET/MR. Magn Reson Med. 2018;79(6):2912-22.

    Article  PubMed  Google Scholar 

  39. Oehmigen M, Lindemann ME, Gratz M, Kirchner J, Ruhlmann V, Umutlu L, et al. Impact of improved attenuation correction featuring a bone atlas and truncation correction on PET quantification in whole-body PET/MR. Eur J Nucl Med Mol Imaging. 2018;45(4):642-53.

    Article  CAS  PubMed  Google Scholar 

  40. Er H, Erden A, Küçük N, Geçim E. Correlation of minimum apparent diffusion coefficient with maximum standardized uptake on fluorodeoxyglucose PET-CT in patients with rectal adenocarcinoma. Diagn Interv Radiol. 2014;20(2):105-9.

    PubMed  Google Scholar 

  41. Surov A, Meyer HJ, Schob S, Höhn AK, Bremicker K, Exner M, et al. Parameters of simultaneous 18F-FDG-PET/MRI predict tumor stage and several histopathological features in uterine cervical cancer. Oncotarget. 2017;8(17):28285-96.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Queiroz MA, Naves A, Dreyer PR, Cerri GG, Buchpiguel CA. PET/MRI Characterization of Mucinous Versus Nonmucinous Components of Rectal Adenocarcinoma: A Comparison of Tumor Metabolism and Cellularity. American Journal of Roentgenology. 2020;216(2):376-83.

    Article  PubMed  Google Scholar 

  43. Catalano OA, Lee SI, Parente C, Cauley C, Furtado FS, Striar R, et al. Improving staging of rectal cancer in the pelvis: the role of PET/MRI. Eur J Nucl Med Mol Imaging. 2021;48(4):1235-45.

    Article  PubMed  Google Scholar 

  44. Sakin A, Sahin S, Karyagar SS, Karyagar S, Atci M, Akboru MH, et al. The Predictive Value of Baseline Volumetric PET/CT Parameters on Treatment Response and Prognosis in Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. J Gastrointest Cancer. 2022;53(2):341-7.

    Article  CAS  PubMed  Google Scholar 

  45. Herold A, Wassipaul C, Weber M, Lindenlaub F, Rasul S, Stift A, et al. Added value of quantitative, multiparametric 18F-FDG PET/MRI in the locoregional staging of rectal cancer. Eur J Nucl Med Mol Imaging. 2022;50(1):205-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Queiroz MA, Ortega CD, Ferreira FR, Capareli FC, Nahas SC, Cerri GG, et al. Value of Primary Rectal Tumor PET/MRI in the Prediction of Synchronic Metastatic Disease. Mol Imaging Biol. 2022;24(3):453-63.

    Article  PubMed  Google Scholar 

  47. Lee SJ, Seo HJ, Kang KW, Jeong SY, Yi NJ, Lee JM, et al. Clinical Performance of Whole-Body 18F-FDG PET/Dixon-VIBE, T1-Weighted, and T2-Weighted MRI Protocol in Colorectal Cancer. Clin Nucl Med. 2015;40(8):e392-8.

    Article  PubMed  Google Scholar 

  48. Mirshahvalad SA, Hinzpeter R, Kohan A, Anconina R, Kulanthaivelu R, Ortega C, et al. Diagnostic performance of [(18)F]-FDG PET/MR in evaluating colorectal cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2022;49(12):4205-17.

    Article  CAS  PubMed  Google Scholar 

  49. Maas M, Lambregts DMJ, Lahaye MJ, Beets GL, Backes W, Vliegen RFA, et al. T-staging of rectal cancer: accuracy of 3.0 Tesla MRI compared with 1.5 Tesla. Abdominal Imaging. 2012;37(3):475-81.

    Article  PubMed  Google Scholar 

  50. Dos Anjos DA, Habr-Gama A, Vailati BB, Rossi CB, Coturel AE, Perez RO, et al. (18)F-FDG uptake by rectal cancer is similar in mucinous and nonmucinous histological subtypes. Ann Nucl Med. 2016;30(8):513-7.

    Article  PubMed  Google Scholar 

  51. Brown G, Radcliffe AG, Newcombe RG, Dallimore NS, Bourne MW, Williams GT. Preoperative assessment of prognostic factors in rectal cancer using high-resolution magnetic resonance imaging. Br J Surg. 2003;90(3):355-64.

    Article  CAS  PubMed  Google Scholar 

  52. van der Paardt MP, Zagers MB, Beets-Tan RG, Stoker J, Bipat S. Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: a systematic review and meta-analysis. Radiology. 2013;269(1):101-12.

    Article  PubMed  Google Scholar 

  53. Beets-Tan RGH, Lambregts DMJ, Maas M, Bipat S, Barbaro B, Curvo-Semedo L, et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol. 2017.

  54. Tsunoda Y, Ito M, Fujii H, Kuwano H, Saito N. Preoperative diagnosis of lymph node metastases of colorectal cancer by FDG-PET/CT. Jpn J Clin Oncol. 2008;38(5):347-53.

    Article  PubMed  Google Scholar 

  55. Kim DJ, Kim JH, Ryu YH, Jeon TJ, Yu JS, Chung JJ. Nodal staging of rectal cancer: high-resolution pelvic MRI versus 18F-FDGPET/CT. J Comput Assist Tomogr. 2011;35(5):531-4.

    Article  PubMed  Google Scholar 

  56. Catalano OA, Coutinho AM, Sahani DV, Vangel MG, Gee MS, Hahn PF, et al. Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR. Abdom Radiol (NY). 2017;42(4):1141-51.

    Article  PubMed  Google Scholar 

  57. Hope TA, Kassam Z, Loening A, McNamara MM, Paspulati R. The use of PET/MRI for imaging rectal cancer. Abdom Radiol (NY). 2019;44(11):3559-68.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Queiroz MA, Ortega CD, Ferreira FR, Nahas SC, Cerri GG, Buchpiguel CA. Diagnostic accuracy of FDG-PET/MRI versus pelvic MRI and thoracic and abdominal CT for detecting synchronous distant metastases in rectal cancer patients. Eur J Nucl Med Mol Imaging. 2021;48(1):186-95.

    Article  PubMed  Google Scholar 

  59. Li Y, Mueller LI, Neuhaus JP, Bertram S, Schaarschmidt BM, Demircioglu A, et al. (18)F-FDG PET/MR versus MR Alone in Whole-Body Primary Staging and Restaging of Patients with Rectal Cancer: What Is the Benefit of PET? J Clin Med. 2020;9(10).

  60. Yoon JH, Lee JM, Chang W, Kang HJ, Bandos A, Lim HJ, et al. Initial M Staging of Rectal Cancer: FDG PET/MRI with a Hepatocyte-specific Contrast Agent versus Contrast-enhanced CT. Radiology. 2020;294(2):310-9.

    Article  PubMed  Google Scholar 

  61. Zhou N, Guo X, Sun H, Yu B, Zhu H, Li N, et al. The Value of (18)F-FDG PET/CT and Abdominal PET/MRI as a One-Stop Protocol in Patients With Potentially Resectable Colorectal Liver Metastases. Front Oncol. 2021;11:714948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee DH, Lee JM, Hur BY, Joo I, Yi NJ, Suh KS, et al. Colorectal Cancer Liver Metastases: Diagnostic Performance and Prognostic Value of PET/MR Imaging. Radiology. 2016;280(3):782-92.

    Article  PubMed  Google Scholar 

  63. Brendle C, Schwenzer NF, Rempp H, Schmidt H, Pfannenberg C, la Fougère C, et al. Assessment of metastatic colorectal cancer with hybrid imaging: comparison of reading performance using different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT in a short case series. Eur J Nucl Med Mol Imaging. 2016;43(1):123-32.

    Article  CAS  PubMed  Google Scholar 

  64. Crimì F, Spolverato G, Lacognata C, Garieri M, Cecchin D, Urso ED, et al. 18F-FDG PET/MRI for Rectal Cancer TNM Restaging After Preoperative Chemoradiotherapy: Initial Experience. Dis Colon Rectum. 2020;63(3):310-8.

    Article  PubMed  Google Scholar 

  65. Amorim BJ, Hong TS, Blaszkowsky LS, Ferrone CR, Berger DL, Bordeianou LG, et al. Clinical impact of PET/MR in treated colorectal cancer patients. Eur J Nucl Med Mol Imaging. 2019;46(11):2260-9.

    Article  PubMed  Google Scholar 

  66. Ince S, Itani M, Henke LE, Smith RK, Wise PE, Mutch MG, et al. FDG-PET/MRI for Nonoperative Management of Rectal Cancer: A Prospective Pilot Study. Tomography. 2022;8(6):2723-34.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cercek A, Dos Santos Fernandes G, Roxburgh CS, Ganesh K, Ng S, Sanchez-Vega F, et al. Mismatch Repair-Deficient Rectal Cancer and Resistance to Neoadjuvant Chemotherapy. Clin Cancer Res. 2020;26(13):3271-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N Engl J Med. 2020;383(23):2207-18.

    Article  PubMed  Google Scholar 

  69. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol. 2018;36(8):773-9.

    Article  CAS  PubMed  Google Scholar 

  70. Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012;30(16):1926-33.

    Article  CAS  PubMed  Google Scholar 

  71. Plodeck V, Platzek I, Streitzig J, Nebelung H, Blum S, Kühn JP, et al. Diagnostic performance of (18)F-fluorodeoxyglucose-PET/MRI versus MRI alone in the diagnosis of pelvic recurrence of rectal cancer. Abdom Radiol (NY). 2021;46(11):5086-94.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Manafi-Farid R, Kupferthaler A, Wundsam H, Gruber G, Vali R, Venhoda C, et al. Additional Value of 2-[(18)F]FDG PET/CT Comparing to MRI in Treatment Approach of Anal Cancer Patients. J Clin Med. 2020;9(9).

  73. Adusumilli P, Elsayed N, Theophanous S, Samuel R, Cooper R, Casanova N, et al. Combined PET-CT and MRI for response evaluation in patients with squamous cell anal carcinoma treated with curative-intent chemoradiotherapy. Eur Radiol. 2022;32(8):5086-96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schramm G, Maus J, Hofheinz F, Petr J, Lougovski A, Beuthien-Baumann B, et al. Evaluation and automatic correction of metal-implant-induced artifacts in MR-based attenuation correction in whole-body PET/MR imaging. Phys Med Biol. 2014;59(11):2713-26.

    Article  CAS  PubMed  Google Scholar 

  75. Schramm G, Langner J, Hofheinz F, Petr J, Lougovski A, Beuthien-Baumann B, et al. Influence and compensation of truncation artifacts in MR-based attenuation correction in PET/MR. IEEE Trans Med Imaging. 2013;32(11):2056-63.

    Article  CAS  PubMed  Google Scholar 

  76. Riihimäki M, Hemminki A, Sundquist J, Hemminki K. Patterns of metastasis in colon and rectal cancer. Sci Rep. 2016;6:29765.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ihn MH, Kim DW, Cho S, Oh HK, Jheon S, Kim K, et al. Curative Resection for Metachronous Pulmonary Metastases from Colorectal Cancer: Analysis of Survival Rates and Prognostic Factors. Cancer Res Treat. 2017;49(1):104-15.

    Article  PubMed  Google Scholar 

  78. Chandarana H, Heacock L, Rakheja R, DeMello LR, Bonavita J, Block TK, et al. Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology. 2013;268(3):874-81.

    Article  PubMed  Google Scholar 

  79. Burris NS, Johnson KM, Larson PE, Hope MD, Nagle SK, Behr SC, et al. Detection of Small Pulmonary Nodules with Ultrashort Echo Time Sequences in Oncology Patients by Using a PET/MR System. Radiology. 2016;278(1):239-46.

    Article  PubMed  Google Scholar 

  80. Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D, Catalano OA, Morales MA, Margolin J, et al. Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction. J Nucl Med. 2019;60(3):429-35.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol. 2019;64(21):215016.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ganeshan B, Miles K, Afaq A, Punwani S, Rodriguez M, Wan S, et al. Texture Analysis of Fractional Water Content Images Acquired during PET/MRI: Initial Evidence for an Association with Total Lesion Glycolysis, Survival and Gene Mutation Profile in Primary Colorectal Cancer. Cancers (Basel). 2021;13(11).

  83. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. (68)Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med. 2019;60(6):801-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kömek H, Can C, Kaplan İ, Gündoğan C, Kepenek F, Karaoglan H, et al. Comparison of [(68) Ga]Ga-DOTA-FAPI-04 PET/CT and [(18)F]FDG PET/CT in colorectal cancer. Eur J Nucl Med Mol Imaging. 2022;49(11):3898-909.

    Article  PubMed  Google Scholar 

  85. Huang D, Wu J, Zhong H, Li Y, Han Y, He Y, et al. [(68)Ga]Ga-FAPI PET for the evaluation of digestive system tumors: systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2022.

Download references

Acknowledgements

The authors thank Joanne Chin, MFA, ELS, and Cecile Berberat, MFA/MA, for their editorial support of this article.

Funding

Two of the authors have following disclosures. Thomas A. Hope: Thomas A. Hope has grant funding to the institution from Clovis Oncology, Philips, GE Healthcare, Lantheus, the Prostate Cancer Foundation, and the National Cancer Institute (R01CA235741 and R01CA212148). He received personal fees from Ipsen, Bayer and BlueEarth Diagnostics, and received fees from and has an equity interest in RayzeBio and Curium. Tyler J Fraum: Consultant, Arterys Inc, Research support, Siemens AG, Honoraria, PrecisCa Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vetri Sudar Jayaprakasam.

Ethics declarations

Conflicts of interest

The declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The graphic abstract was missing in the article. However, the graphical abstract is included.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaprakasam, V.S., Ince, S., Suman, G. et al. PET/MRI in colorectal and anal cancers: an update. Abdom Radiol 48, 3558–3583 (2023). https://doi.org/10.1007/s00261-023-03897-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-03897-y

Keywords

Navigation