Skip to main content

Advertisement

Log in

Extracellular volume fraction obtained by dual-energy CT depicting the etiological differences of liver fibrosis

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess etiological differences in extracellular volume fraction (ECV) and evaluate its influence on staging performance.

Methods

A total of 166 patients with normal liver (n = 14) and chronic liver disease related to viral hepatitis (n = 71), alcohol (n = 44), and nonalcoholic steatohepatitis (NASH) (n = 37) underwent dual-energy CT (DECT) of the liver (5-min equilibrium-phase images) between January 2020 and July 2022. The iodine densities of the parenchyma and aorta were measured and ECV was calculated. Comparisons of ECV between each etiology and METAVIR fibrosis stage were statistically analyzed (p < 0.05).

Results

ECV in each etiology and all patients significantly increased with higher fibrosis stage (p < 0.001) and showed a strong or moderate correlation with fibrosis stage (Spearman’s ρ; all patients, 0.701; viral hepatitis, 0.638; alcoholic, 0.885; NASH, 0.791). In stages F2–F4, ECV in alcoholic liver disease was significantly larger than those for viral hepatitis and NASH (p < 0.05); however, no significant difference in stage F1 was found among the three etiologies. The cutoff values and areas under the receiver operating characteristic curve (AUC-ROCs) for discriminating fibrosis stage (≥ F1– ≥ F4) were higher for alcohol (cutoff values and AUC-ROC; 20.1% and 0.708 for ≥ F1, 23.8% and 0.990 for ≥ F2, 24.3% and 0.968 for ≥ F3, and 26.6% and 0.961 for ≥ F4, respectively) compared with those for the others.

Conclusion

ECV in alcoholic liver disease is higher than that in other etiologies in the advanced stages of fibrosis, and etiological differences in ECV affect the staging performance of fibrosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Setiawan VW, Stram DO, Porcel J, Lu SC, Le Marchand L, Noureddin M (2016) Prevalence of chronic liver disease and cirrhosis by underlying cause in understudied ethnic groups: the multiethnic cohort. Hepatology 64:1969–1977. https://doi.org/10.1002/hep.28677.

    Article  PubMed  Google Scholar 

  2. Pinzani M, Rombouts K (2004) Liver fibrosis: from the bench to clinical targets. Dig Liver Dis 36:231–242. https://doi.org/10.1016/j.dld.2004.01.003.

    Article  CAS  PubMed  Google Scholar 

  3. Tsochatzis EA, Bosch J, Burroughs AK (2014) Liver cirrhosis. Lancet 383:1749–1761. https://doi.org/10.1016/S0140-6736(14)60121-5.

    Article  PubMed  Google Scholar 

  4. Silva AC, Taouli B, Torbenson MS, Wells ML, Yeh B, Miller FH (2017) Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel. Abdom Radiol (NY) 42:2037–2053. https://doi.org/10.1007/s00261-017-1211-7.

    Article  PubMed  Google Scholar 

  5. Morita K, Nishie A, Ushijima Y, Takayama Y, Fujita N, Kubo Y, Ishimatsu K, Yoshizumi T, Maehara J, Ishigami K (2021) Noninvasive assessment of liver fibrosis by dual-layer spectral detector CT. Eur J Radiol 136:109575. https://doi.org/10.1016/j.ejrad.2021.109575.

  6. Marri UK, Das P, Shalimar, Kalaivani M, Srivastava DN, Madhusudhan KS (2021) Noninvasive Staging of Liver Fibrosis Using 5–Minute Delayed Dual–Energy CT: Comparison with US Elastography and Correlation with Histologic Findings. Radiology 298:600–608. https://doi.org/10.1148/radiol.2021202232.

    Article  PubMed  Google Scholar 

  7. Ito E, Sato K, Yamamoto R, Sakamoto K, Urakawa H, Yoshimitsu K (2020) Usefulness of iodine-blood material density images in estimating degree of liver fibrosis by calculating extracellular volume fraction obtained from routine dual-energy liver CT protocol equilibrium phase data: preliminary experience. Jpn J Radiol 38:365–373. https://doi.org/10.1007/s11604-019-00918-z.

    Article  CAS  PubMed  Google Scholar 

  8. Sofue K, Tsurusaki M, Mileto A, Hyodo T, Sasaki K, Nishii T, Chikugo T, Yada N, Kudo M, Sugimura K, Murakami T (2018) Dual–energy computed tomography for non–invasive staging of liver fibrosis: Accuracy of iodine density measurements from contrast–enhanced data. Hepatol Res 48:1008–1019. https://doi.org/10.1111/hepr.13205.

    Article  PubMed  Google Scholar 

  9. Shinagawa Y, Sakamoto K, Sato K, Ito E, Urakawa H, Yoshimitsu K (2018) Usefulness of new subtraction algorithm in estimating degree of liver fibrosis by calculating extracellular volume fraction obtained from routine liver CT protocol equilibrium phase data: Preliminary experience. Eur J Radiol 103:99–104. https://doi.org/10.1016/j.ejrad.2018.04.012.

    Article  PubMed  Google Scholar 

  10. Guo SL, Su LN, Zhai YN, Chirume WM, Lei JQ, Zhang H, Yang L, Shen XP, Wen XX, Guo YM (2017) The clinical value of hepatic extracellular volume fraction using routine multiphasic contrast–enhanced liver CT for staging liver fibrosis. Clin Radiol 72:242–246. https://doi.org/10.1016/j.crad.2016.10.003.

    Article  CAS  PubMed  Google Scholar 

  11. Bandula S, Punwani S, Rosenberg WM, Jalan R, Hall AR, Dhillon A, Moon JC, Taylor SA (2015) Equilibrium contrast–enhanced CT imaging to evaluate hepatic fibrosis: initial validation by comparison with histopathologic sampling. Radiology 275:136–143. https://doi.org/10.1148/radiol.14141435.

    Article  PubMed  Google Scholar 

  12. Novo E, Parola M (2008) Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1:5. https://doi.org/10.1186/1755-1536-1-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pinzani M (2015) Pathophysiology of Liver Fibrosis. Dig Dis 33:492–497. https://doi.org/10.1159/000374096.

    Article  PubMed  Google Scholar 

  14. Khatun M, Ray RB (2019) Mechanisms underlying hepatitis C virus-associated hepatic fibrosis. Cells 8:1249. https://doi.org/10.3390/cells8101249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE (2013) From NAFLD to NASH to cirrhosis— new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol 10:627–636. https://doi.org/10.1038/nrgastro.2013.149.

    Article  CAS  PubMed  Google Scholar 

  16. Bian Z, Ma X (2012) Liver fibrogenesis in non-alcoholic steatohepatitis. Front Physiol 3:248. https://doi.org/10.3389/fphys.2012.00248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lackner C, Tiniakos D (2012) Fibrosis and alcohol-related liver disease. J Hepatol; 70:294–304. https://doi.org/10.1016/j.jhep.2018.12.003.

    Article  Google Scholar 

  18. Liu SY, Tsai IT, Hsu YC (2021) Alcohol-related liver disease: basic mechanisms and clinical perspectives. Int J Mol Sci 22:5170. https://doi.org/10.3390/ijms22105170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B (2006) Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130:435–452. https://doi.org/10.1053/j.gastro.2005.10.055.

    Article  CAS  PubMed  Google Scholar 

  20. Jeong WI, Park O, Gao B (2008) Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 134:248–258. https://doi.org/10.1053/j.gastro.2007.09.034.

    Article  CAS  PubMed  Google Scholar 

  21. Bedossa P, Poynard T (1996) An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 24:289–293. https://doi.org/10.1002/hep.510240201.

    Article  CAS  Google Scholar 

  22. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, Denk H, Desmet V, Korb G, MacSween RN, et al (1995) Histological grading and staging of chronic hepatitis. J Hepatol 22:696–699. https://doi.org/10.1016/0168-8278(95)80226-6.

    Article  CAS  PubMed  Google Scholar 

  23. Kleiner DE, Brunt EM, Van Natta M et al; Nonalcoholic Steatohepatitis Clinical Research Network (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321. https://doi.org/10.1002/hep.20701.

  24. Altamirano, J, Miquel, R, Katoonizadeh, A et al (2014) A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 146:1231–1239. https://doi.org/10.1053/j.gastro.2014.01.018.

    Article  PubMed  Google Scholar 

  25. Ozaki K, Matsui O, Kobayashi S, Minami T, Kitao A, Gabata T (2016) Morphometric changes in liver cirrhosis: aetiological differences correlated with progression. Br J Radiol 89:20150896. https://doi.org/10.1259/bjr.20150896.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Varenika V, Fu Y, Maher JJ, Gao D, Kakar S, Cabarrus MC, Yeh BM (2013) Hepatic fibrosis: evaluation with semiquantitative contrast-enhanced CT. Radiology 266:151–158. https://doi.org/10.1148/radiol.12112452.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Overholser BR, Sowinski KM. Biostatistics primer: part 2 (2008) Nutr Clin Pract 23:76–84. https://doi.org/10.1177/011542650802300176.

    Article  PubMed  Google Scholar 

  29. Villeneuve JP, Dagenais M, Huet PM, Roy A, Lapointe R, Marleau D (1996) The hepatic microcirculation in the isolated perfused human liver. Hepatology 23:24–31. https://doi.org/10.1002/hep.510230104.

    Article  CAS  PubMed  Google Scholar 

  30. Faria SC, Ganesan K, Mwangi I, Shiehmorteza M, Viamonte B, Mazhar S, Peterson M, Kono Y, Santillan C, Casola G, Sirlin CB (2009) MR imaging of liver fibrosis: current state of the art. Radiographics 29:1615–1635. https://doi.org/10.1148/rg.296095512.

    Article  PubMed  Google Scholar 

  31. Ozaki K, Kozaka K, Kosaka Y, Kimura H, Gabata T (2020) Morphometric changes and imaging findings of diffuse liver disease in relation to intrahepatic hemodynamics. Jpn J Radiol 38:833–852. https://doi.org/10.1007/s11604-020-00978-6.

    Article  PubMed  Google Scholar 

  32. Maher JJ (1990) Hepatic fibrosis caused by alcohol. Semin Liver Dis 10:66–74. https://doi.org/10.1055/s-2008-1040458.

    Article  CAS  PubMed  Google Scholar 

  33. Vizzotto L, Vertemati M, Gambacorta M, Sabatella G, Spina V, Minola E (2002) Analysis of histological and immunohistochemical patterns of the liver in posthepatitic and alcoholic cirrhosis by computerized morphometry. Mod Pathol 15:798–806. https://doi.org/10.1097/01.MP.0000024365.92937.5E.

    Article  PubMed  Google Scholar 

  34. Bak S, Kim JE, Bae K, Cho JM, Choi HC, Park MJ, Choi HY, Shin HS, Lee SM, Kim HO (2020) Quantification of liver extracellular volume using dual-energy CT: utility for prediction of liver-related events in cirrhosis. Eur Radiol 30:5317–5326. https://doi.org/10.1007/s00330-020-06876-9.

    Article  CAS  PubMed  Google Scholar 

  35. European Association for the Study of Liver (2012) EASL clinical practical guidelines: management of alcoholic liver disease. J Hepatol 57:399–420. https://doi.org/10.1016/j.jhep.2012.04.004.

    Article  Google Scholar 

  36. Singal AK, Bataller R, Ahn J, Kamath PS, Shah VH (2018) ACG Clinical Guideline: Alcoholic liver disease. Am J Gastroenterol 113:175–194. https://doi.org/10.1038/ajg.2017.469.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ozaki K, Ishida T, Ohtani T, Shimada M, Kimura H, Gabata T (2021) Assessing the progression of segmental fibrosis in chronic liver disease using extracellular volume fractions Eur J Radiol 145:110033. https://doi.org/10.1016/j.ejrad.2021.110033.

  38. Marin D, Pratts-Emanuelli JJ, Mileto A, Husarik DB, Bashir MR, Nelson RC, Boll DT (2015) Interdependencies of acquisition, detection, and reconstruction techniques on the accuracy of iodine quantification in varying patient sizes employing dual-energy CT. Eur Radiol 25:679–686. https://doi.org/10.1007/s00330-014-3447-8.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

KO: conceptualization; KO, TI: methodology; TO, SI, SH, TI, KT, YM: data curation and investigation; SI: formal analysis; SH: visualization; KO, TO: writing—original draft preparation; SI, HK, TG: writing—review and editing; TG: supervision.

Corresponding author

Correspondence to Kumi Ozaki.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This single-center retrospective study was approved by our institution’s Research Ethics Committee (approval No.: 20190164). Informed consent for contrast-enhanced CT was obtained from all patients before the examinations.

Research involving human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozaki, K., Ohtani, T., Ishida, S. et al. Extracellular volume fraction obtained by dual-energy CT depicting the etiological differences of liver fibrosis. Abdom Radiol 48, 1975–1986 (2023). https://doi.org/10.1007/s00261-023-03873-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-03873-6

Keywords

Navigation