Skip to main content

Advertisement

Log in

Multi-parameter diffusion and perfusion magnetic resonance imaging and radiomics nomogram for preoperative evaluation of aquaporin-1 expression in rectal cancer

  • Hollow Organ GI
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

The overexpression of aquaporin-1 (AQP1) is associated with poor prognosis in rectal cancer. This study aimed to explore the value of multi-parameter diffusion and perfusion MRI and radiomics models in predicting AQP1 high expression.

Methods

This prospective study was performed from July 2019 to February 2021, which included rectal cancer participants after preoperative rectal MRI, with diffusion-weighted imaging, intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and dynamic contrast-enhanced (DCE) sequences. Radiomic features were extracted from MR images, and immunohistochemical tests assessed AQP1 expression. Selected quantitative MRI and radiomic features were analyzed. Receiver operating characteristic (ROC) curves evaluated the predictive performance. The nomogram performance was evaluated by its calibration, discrimen, and clinical utility. The intraclass correlation coefficient evaluated the interobserver agreement for the MRI features.

Results

110 participants with the age of 60.7 ± 12.5 years been enrolled in this study. The apparent diffusion coefficient (ADC), IVIM_D, DKI_diffusivity, and DCE_Ktrans were significantly higher in participants with high AQP1 expression than in those with low expression (P < 0.05). ADC (b = 1000, 2000, and 3000 s/mm2), IVIM_D, DKI_diffusivity, and DCE_Ktrans were positively correlated (r = 0.205, 0.275, 0.37, 0.235, 0.229, and 0.227, respectively; P < 0.05), whereas DKI_Kurtosis was negatively correlated (r = − 0.22, P = 0.021) with AQP1 expression. ADC (b = 3000 s/mm2), IVIM_D, DKI_ diffusivity, DKI_Kurtosis, and DCE_Ktrans had moderate diagnostic efficiencies for high AQP1 expression (AUC = 0.715, 0.636, 0.627, 0.633, and 0.632, respectively; P < 0.05). The radiomic features had excellent predictive efficiency for high AQP1 expression (AUC = 0.967 and 0.917 for training and validation). The model-based nomogram had C-indexes of 0.932 and 0.851 for the training and validation cohorts, which indicated good fitting to the calibration curves (p > 0.05).

Conclusion

Diffusion and perfusion MRI can indicate the aquaporin-1 expression in rectal cancer, and radiomic features can enhance the predictive efficiency for high AQP1 expression. A nomogram for high aquaporin-1 expression will improve clinical decision-making.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: a cancer journal for clinicians 2020;70(1):7-30. doi: https://doi.org/10.3322/caac.21590

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2020. CA: a cancer journal for clinicians 2020;70(3):145-164. doi: https://doi.org/10.3322/caac.21601

    Article  Google Scholar 

  3. Andrew AS, Parker S, Anderson JC, Rees JR, Robinson C, Riddle B, Butterly LF. Risk Factors for Diagnosis of Colorectal Cancer at a Late Stage: a Population-Based Study. Journal of general internal medicine 2018;33(12):2100-2105. doi: https://doi.org/10.1007/s11606-018-4648-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang G, Ma W, Dong H, Shu J, Hou W, Guo Y, Wang M, Wei X, Ren J, Zhang J. Based on Histogram Analysis: ADC(aqp) Derived from Ultra-high b-Value DWI could be a Non-invasive Specific Biomarker for Rectal Cancer Prognosis. Sci Rep 2020;10(1):10158. doi: https://doi.org/10.1038/s41598-020-67263-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tomita Y, Dorward H, Yool AJ, Smith E, Townsend AR, Price TJ, Hardingham JE. Role of Aquaporin 1 Signalling in Cancer Development and Progression. International journal of molecular sciences 2017;18(2). doi: https://doi.org/10.3390/ijms18020299

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yoshida T, Hojo S, Sekine S, Sawada S, Okumura T, Nagata T, Shimada Y, Tsukada K. Expression of aquaporin-1 is a poor prognostic factor for stage II and III colon cancer. Molecular and clinical oncology 2013;1(6):953-958. doi: https://doi.org/10.3892/mco.2013.165

    Article  PubMed  PubMed Central  Google Scholar 

  7. Imaizumi H, Ishibashi K, Takenoshita S, Ishida H. Aquaporin 1 expression is associated with response to adjuvant chemotherapy in stage II and III colorectal cancer. Oncology letters 2018;15(5):6450-6456. doi: https://doi.org/10.3892/ol.2018.8170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki C, Torkzad MR, Tanaka S, Palmer G, Lindholm J, Holm T, Blomqvist L. The importance of rectal cancer MRI protocols on interpretation accuracy. World journal of surgical oncology 2008;6:89. doi: https://doi.org/10.1186/1477-7819-6-89

    Article  PubMed  PubMed Central  Google Scholar 

  9. Srisajjakul S, Prapaisilp P, Bangchokdee S. Pitfalls in MRI of rectal cancer: What radiologists need to know and avoid. Clinical imaging 2018;50:130-140. doi: https://doi.org/10.1016/j.clinimag.2017.11.012

    Article  PubMed  Google Scholar 

  10. Peng Y, Xu C, Hu X, Shen Y, Hu D, Kamel I, Li Z. Reduced Field-of-View Diffusion-Weighted Imaging in Histological Characterization of Rectal Cancer: Impact of Different Region-of-Interest Positioning Protocols on Apparent Diffusion Coefficient Measurements. European journal of radiology 2020;127:109028. doi: https://doi.org/10.1016/j.ejrad.2020.109028

    Article  PubMed  Google Scholar 

  11. Yang X, Xiao X, Lu B, Chen Y, Wen Z, Yu S. Perfusion-sensitive parameters of intravoxel incoherent motion MRI in rectal cancer: evaluation of reproducibility and correlation with dynamic contrast-enhanced MRI. Acta Radiol 2019;60(5):569-577. doi: https://doi.org/10.1177/0284185118791201

    Article  PubMed  Google Scholar 

  12. Granata V, Fusco R, Reginelli A, Delrio P, Selvaggi F, Grassi R, Izzo F, Petrillo A. Diffusion kurtosis imaging in patients with locally advanced rectal cancer: current status and future perspectives. The Journal of international medical research 2019;47(6):2351-2360. doi: https://doi.org/10.1177/0300060519827168

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dijkhoff RAP, Beets-Tan RGH, Lambregts DMJ, Beets GL, Maas M. Value of DCE-MRI for staging and response evaluation in rectal cancer: A systematic review. European journal of radiology 2017;95:155-168. doi: https://doi.org/10.1016/j.ejrad.2017.08.009

    Article  PubMed  Google Scholar 

  14. Xu Y, Xu Q, Sun H, Liu T, Shi K, Wang W. Could IVIM and ADC help in predicting the KRAS status in patients with rectal cancer? European radiology 2018;28(7):3059-3065. doi: https://doi.org/10.1007/s00330-018-5329-y

    Article  PubMed  Google Scholar 

  15. Zheng X, Chen Y, Zheng D, Xiao Y, Chen J, Pan J, Chen W. Diffusion kurtosis imaging and tumour microstructure for monitoring response to radiotherapy in human nasopharyngeal carcinoma xenografts. Japanese journal of clinical oncology 2020;50(5):548-555. doi: https://doi.org/10.1093/jjco/hyaa002

    Article  PubMed  Google Scholar 

  16. Armbruster M, D'Anastasi M, Holzner V, Kreis ME, Dietrich O, Brandlhuber B, Graser A, Brandlhuber M. Improved detection of a tumorous involvement of the mesorectal fascia and locoregional lymph nodes in locally advanced rectal cancer using DCE-MRI. International journal of colorectal disease 2018;33(7):901-909. doi: https://doi.org/10.1007/s00384-018-3083-x

    Article  PubMed  Google Scholar 

  17. Nie K, Shi L, Chen Q, Hu X, Jabbour SK, Yue N, Niu T, Sun X. Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI. Clinical cancer research : an official journal of the American Association for Cancer Research 2016;22(21):5256-5264. doi: https://doi.org/10.1158/1078-0432.Ccr-15-2997

    Article  Google Scholar 

  18. Chen J, Chen Y, Zheng D, Pang P, Lu J, Zheng X. Pretreatment MR-Based Radiomics Signature as Potential Imaging Biomarker for Assessing the Expression of Topoisomerase II alpha (TOPO-IIα) in Rectal Cancer. J Magn Reson Imaging 2020;51(6):1881-1889. doi: https://doi.org/10.1002/jmri.26972

    Article  PubMed  Google Scholar 

  19. Cui Y, Liu H, Ren J, Du X, Xin L, Li D, Yang X, Wang D. Development and validation of a MRI-based radiomics signature for prediction of KRAS mutation in rectal cancer. European radiology 2020;30(4):1948-1958. doi: https://doi.org/10.1007/s00330-019-06572-3

    Article  CAS  PubMed  Google Scholar 

  20. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of surgical oncology 2010;17(6):1471-1474. doi: https://doi.org/10.1245/s10434-010-0985-4

    Article  PubMed  Google Scholar 

  21. Kang BW, Kim JG, Lee SJ, Chae YS, Jeong JY, Yoon GS, Park SY, Kim HJ, Park JS, Choi GS, Jeong JY. Expression of aquaporin-1, aquaporin-3, and aquaporin-5 correlates with nodal metastasis in colon cancer. Oncology 2015;88(6):369-376. doi: https://doi.org/10.1159/000369073

    Article  CAS  PubMed  Google Scholar 

  22. Sinicrope FA, Ruan SB, Cleary KR, Stephens LC, Lee JJ, Levin B. bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer research 1995;55(2):237-241.

    CAS  PubMed  Google Scholar 

  23. Xueying L, Zhongping Z, Zhoushe Z, Li G, Yongjin T, Changzheng S, Zhifeng Z, Peihao C, Hao X, Li H. Investigation of Apparent Diffusion Coefficient from Ultra-high b-Values in Parkinson's Disease. European radiology 2015;25(9):2593-2600. doi: https://doi.org/10.1007/s00330-015-3678-3

    Article  PubMed  Google Scholar 

  24. Sun K, Chen X, Chai W, Fei X, Fu C, Yan X, Zhan Y, Chen K, Shen K, Yan F. Breast Cancer: Diffusion Kurtosis MR Imaging-Diagnostic Accuracy and Correlation with Clinical-Pathologic Factors. Radiology 2015;277(1):46-55. doi: https://doi.org/10.1148/radiol.15141625

    Article  PubMed  Google Scholar 

  25. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10(3):223-232. doi: https://doi.org/10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s

    Article  CAS  PubMed  Google Scholar 

  26. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007;188(6):1622-1635. doi: https://doi.org/10.2214/ajr.06.1403

    Article  PubMed  Google Scholar 

  27. Lemberskiy G, Rosenkrantz AB, Veraart J, Taneja SS, Novikov DS, Fieremans E. Time-Dependent Diffusion in Prostate Cancer. Investigative radiology 2017;52(7):405-411. doi: https://doi.org/10.1097/rli.0000000000000356

    Article  PubMed  Google Scholar 

  28. Mukherjee A, Wu D, Davis HC, Shapiro MG. Non-invasive imaging using reporter genes altering cellular water permeability. Nature communications 2016;7:13891. doi: https://doi.org/10.1038/ncomms13891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Obata T, Kershaw J, Tachibana Y, Miyauchi T, Abe Y, Shibata S, Kawaguchi H, Ikoma Y, Takuwa H, Aoki I, Yasui M. Comparison of diffusion-weighted MRI and anti-Stokes Raman scattering (CARS) measurements of the inter-compartmental exchange-time of water in expression-controlled aquaporin-4 cells. Sci Rep 2018;8(1):17954. doi: https://doi.org/10.1038/s41598-018-36264-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168(2):497-505. doi: https://doi.org/10.1148/radiology.168.2.3393671

    Article  PubMed  Google Scholar 

  31. Xiao-ping Y, Jing H, Fei-ping L, Yin H, Qiang L, Lanlan W, Wei W. Intravoxel incoherent motion MRI for predicting early response to induction chemotherapy and chemoradiotherapy in patients with nasopharyngeal carcinoma. J Magn Reson Imaging 2016;43(5):1179-1190. doi: https://doi.org/10.1002/jmri.25075

    Article  PubMed  Google Scholar 

  32. Jenkinson MD, du Plessis DG, Smith TS, Brodbelt AR, Joyce KA, Walker C. Cellularity and apparent diffusion coefficient in oligodendroglial tumours characterized by genotype. Journal of neuro-oncology 2010;96(3):385-392. doi: https://doi.org/10.1007/s11060-009-9970-9

    Article  CAS  PubMed  Google Scholar 

  33. Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 2010;23(7):698-710. doi: https://doi.org/10.1002/nbm.1518

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosenkrantz AB, Sigmund EE, Johnson G, Babb JS, Mussi TC, Melamed J, Taneja SS, Lee VS, Jensen JH. Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 2012;264(1):126-135. doi: https://doi.org/10.1148/radiol.12112290

    Article  PubMed  Google Scholar 

  35. Shen L, Zhou G, Tang F, Lin Y, Zhou J, Lv P, Wang Y, Zong G, Zhao J. MR diffusion kurtosis imaging for cancer diagnosis: A meta-analysis of the diagnostic accuracy of quantitative kurtosis value and diffusion coefficient. Clinical imaging 2018;52:44-56. doi: https://doi.org/10.1016/j.clinimag.2018.06.005

    Article  PubMed  Google Scholar 

  36. Yu J, Dai X, Zou HH, Song JC, Li Y, Shi HB, Xu Q, Shen H. Diffusion kurtosis imaging in identifying the malignancy of lymph nodes during the primary staging of rectal cancer. Colorectal disease : the official journal of the Association of Coloproctology of Great Britain and Ireland 2018;20(2):116-125. doi: https://doi.org/10.1111/codi.13835

    Article  CAS  Google Scholar 

  37. Verkman AS. Aquaporin water channels and endothelial cell function. Journal of anatomy 2002;200(6):617-627. doi: https://doi.org/10.1046/j.1469-7580.2002.00058.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu YF, Zhang Y, Shen N, Zhang RY, Lu XQ. Effect of VEGF, P53 and telomerase on angiogenesis of gastric carcinoma tissue. Asian Pacific journal of tropical medicine 2014;7(4):293-296. doi: https://doi.org/10.1016/s1995-7645(14)60041-9

    Article  CAS  PubMed  Google Scholar 

  39. Laforenza U. Water channel proteins in the gastrointestinal tract. Molecular aspects of medicine 2012;33(5-6):642-650. doi: https://doi.org/10.1016/j.mam.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  40. Nico B, Ribatti D. Aquaporins in tumor growth and angiogenesis. Cancer letters 2010;294(2):135-138. doi: https://doi.org/10.1016/j.canlet.2010.02.005

    Article  CAS  PubMed  Google Scholar 

  41. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016;278(2):563-577. doi: https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  42. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, Ma ZL, Liu ZY. Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2016;34(18):2157-2164. doi: https://doi.org/10.1200/jco.2015.65.9128

    Article  Google Scholar 

  43. Cui Y, Yang X, Shi Z, Yang Z, Du X, Zhao Z, Cheng X. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. European radiology 2019;29(3):1211-1220. doi: https://doi.org/10.1007/s00330-018-5683-9

    Article  PubMed  Google Scholar 

  44. Zhou X, Yi Y, Liu Z, Cao W, Lai B, Sun K, Li L, Zhou Z, Feng Y, Tian J. Radiomics-Based Pretherapeutic Prediction of Non-response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Annals of surgical oncology 2019;26(6):1676-1684. doi: https://doi.org/10.1245/s10434-019-07300-3

    Article  PubMed  PubMed Central  Google Scholar 

  45. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine Learning for Medical Imaging. Radiographics : a review publication of the Radiological Society of North America, Inc 2017;37(2):505-515. doi: https://doi.org/10.1148/rg.2017160130

    Article  Google Scholar 

  46. Heiland DH, Simon-Gabriel CP, Demerath T, Haaker G, Pfeifer D, Kellner E, Kiselev VG, Staszewski O, Urbach H, Weyerbrock A, Mader I. Integrative Diffusion-Weighted Imaging and Radiogenomic Network Analysis of Glioblastoma multiforme. Sci Rep 2017;7:43523. doi: https://doi.org/10.1038/srep43523

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang J, Wu CJ, Bao ML, Zhang J, Wang XN, Zhang YD. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. European radiology 2017;27(10):4082-4090. doi: https://doi.org/10.1007/s00330-017-4800-5

    Article  PubMed  Google Scholar 

  48. Li J, Liu S, Qin Y, Zhang Y, Wang N, Liu H. High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features: A more precise and personalized gliomas management. PloS one 2020;15(1):e0227703. doi: https://doi.org/10.1371/journal.pone.0227703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeon SH, Lim YJ, Koh J, Chang WI, Kim S, Kim K, Chie EK. A radiomic signature model to predict the chemoradiation-induced alteration in tumor-infiltrating CD8(+) cells in locally advanced rectal cancer. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 2021;162:124-131. doi: https://doi.org/10.1016/j.radonc.2021.07.004

    Article  CAS  Google Scholar 

Download references

Funding

This study has received funding by the National Natural Science Foundation of China (No. 82060310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liling Long.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yidi Chen and Basen Li have contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, B., Jiang, Z. et al. Multi-parameter diffusion and perfusion magnetic resonance imaging and radiomics nomogram for preoperative evaluation of aquaporin-1 expression in rectal cancer. Abdom Radiol 47, 1276–1290 (2022). https://doi.org/10.1007/s00261-021-03397-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03397-x

Keywords

Navigation