Skip to main content

Advertisement

Log in

Cost-effectiveness of dual-energy CT versus multiphasic single-energy CT and MRI for characterization of incidental indeterminate renal lesions

  • Practice
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the cost-effectiveness of DECT versus multiphasic CT and MRI for characterizing small incidentally detected indeterminate renal lesions using a Markov Monte Carlo decision-analytic model.

Background

Incidental renal lesions are commonly encountered due to the increasing utilization of medical imaging and the increasing prevalence of renal lesions with age. Currently recommended imaging modalities to further characterize incidental indeterminate renal lesions have some inherent drawbacks. Single-phase DECT may overcome these limitations, but its cost-effectiveness remains uncertain.

Materials and methods

A decision-analytic (Markov) model was constructed to estimate life expectancy and lifetime costs for otherwise healthy 64-year-old patients with small (≤ 4 cm) incidentally detected, indeterminate renal lesions on routine imaging (e.g., ultrasound or single-phase CT). Three strategies for evaluating renal lesions for enhancement were compared: multiphase SECT (e.g., true unenhanced and nephrographic phase), multiphasic MRI, and single-phase DECT (nephrographic phase in dual-energy mode). The model incorporated modality-specific diagnostic test performance, incidence, and prevalence of incidental renal cell carcinomas (RCCs), effectiveness, costs, and health outcomes. An incremental cost-effectiveness analysis was performed to identify strategy preference at willingness-to-pay (WTP) thresholds of $50,000 and $100,000 per quality-adjusted life-year (QALY) gained. Deterministic and probabilistic sensitivity analysis were performed.

Results

In the base case analysis, expected mean costs per patient undergoing characterization of incidental renal lesions were $2567 for single-phase DECT, $3290 for multiphasic CT, and $3751 for multiphasic MRI. Associated quality-adjusted life-years were the highest for single-phase DECT at 0.962, for multiphasic MRI it was 0.940, and was the lowest for multiphasic CT at 0.925. Because of lower associated costs and higher effectiveness, the single-phase DECT strategy dominated the other two strategies.

Conclusions

Single-phase DECT is potentially more cost-effective than multiphasic SECT and MRI for evaluating small incidentally detected indeterminate renal lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berland LL, Silverman SG, Gore RM, et al. Managing incidental findings on abdominal CT: white paper of the ACR incidental findings committee. J Am Coll Radiol. 2010;7(10):754-73.

    PubMed  Google Scholar 

  2. Herts BR, Silverman SG, Hindman NM, et al. Management of the Incidental Renal Mass on CT: A White Paper of the ACR Incidental Findings Committee. J Am Coll Radiol. 2018;15(2):264-73

    PubMed  Google Scholar 

  3. Carrim ZI, Murchison JT. The prevalence of simple renal and hepatic cysts detected by spiral computed tomography. Clin Radiol. 2003;58(8):626-9.

    CAS  PubMed  Google Scholar 

  4. Silverman SG, Israel GM, Herts BR, Richie JP. Management of the incidental renal mass. Radiology. 2008;249(1):16-31.

    PubMed  Google Scholar 

  5. Silverman SG, Israel GM, Trinh QD. Incompletely characterized incidental renal masses: emerging data support conservative management. Radiology. 2015;275(1):28-42

    PubMed  Google Scholar 

  6. Ljungberg B, Cowan NC, Hanbury DC, et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol. 2010;58(3):398-406.

    PubMed  Google Scholar 

  7. Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F. International variations and trends in renal cell carcinoma incidence and mortality. Eur Urol. 2015;67(3):519-30.

    PubMed  Google Scholar 

  8. Volpe A, Panzarella T, Rendon RA, Haider MA, Kondylis FI, Jewett MA. The natural history of incidentally detected small renal masses. Cancer. 2004;100(4):738-45.

    PubMed  Google Scholar 

  9. Capitanio U, Bensalah K, Bex A, et al. Epidemiology of Renal Cell Carcinoma. Eur Urol. 2019;75(1):74-84.

    PubMed  Google Scholar 

  10. Israel GM, Bosniak MA. How I do it: evaluating renal masses. Radiology. 2005;236(2):441-50.

    PubMed  Google Scholar 

  11. Campbell S, Uzzo RG, Allaf ME, et al. Renal Mass and Localized Renal Cancer: AUA Guideline. J Urol. 2017;198(3):520-9.

    PubMed  Google Scholar 

  12. Gill IS, Aron M, Gervais DA, Jewett MA. Clinical practice. Small renal mass. N Engl J Med. 2010;362(7):624-34.

  13. Mileto A, Nelson RC, Samei E, et al. Impact of dual-energy multi-detector row CT with virtual monochromatic imaging on renal cyst pseudoenhancement: in vitro and in vivo study. Radiology. 2014;272(3):767-76.

    PubMed  Google Scholar 

  14. Tappouni R, Kissane J, Sarwani N, Lehman EB. Pseudoenhancement of renal cysts: influence of lesion size, lesion location, slice thickness, and number of MDCT detectors. AJR Am J Roentgenol. 2012;198(1):133-7.

    PubMed  Google Scholar 

  15. Birnbaum BA, Hindman N, Lee J, Babb JS. Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology. 2007;242(1):109-19.

    PubMed  Google Scholar 

  16. Mileto A, Barina A, Marin D, et al. Virtual Monochromatic Images from Dual-Energy Multidetector CT: Variance in CT Numbers from the Same Lesion between Single-Source Projection-based and Dual-Source Image-based Implementations. Radiology. 2016;279(1):269-77.

    PubMed  Google Scholar 

  17. Solomon J, Mileto A, Nelson RC, Roy Choudhury K, Samei E. Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi-Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm. Radiology. 2016;279(1):185-94.

    PubMed  Google Scholar 

  18. Bosniak MA. The small (less than or equal to 3.0 cm) renal parenchymal tumor: detection, diagnosis, and controversies. Radiology. 1991;179(2):307-17.

  19. Graser A, Becker CR, Staehler M, et al. Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol. 2010;45(7):399-405.

    PubMed  Google Scholar 

  20. Silverman SG, Mortele KJ, Tuncali K, Jinzaki M, Cibas ES. Hyperattenuating renal masses: etiologies, pathogenesis, and imaging evaluation. Radiographics. 2007;27(4):1131-43.

    PubMed  Google Scholar 

  21. Hecht EM, Israel GM, Krinsky GA, et al. Renal masses: quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology. 2004;232(2):373-8.

    PubMed  Google Scholar 

  22. Katsuda T, Kuroda C, Fujita M. Reducing misregistration of mask image in hepatic DSA. Radiol Technol. 1997;68(6):487-90.

    CAS  PubMed  Google Scholar 

  23. Ascenti G, Mazziotti S, Mileto A, et al. Dual-source dual-energy CT evaluation of complex cystic renal masses. AJR Am J Roentgenol. 2012;199(5):1026-34.

    PubMed  Google Scholar 

  24. Kaza RK, Caoili EM, Cohan RH, Platt JF. Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol. 2011;197(6):1375-81.

    PubMed  Google Scholar 

  25. Marin D, Davis D, Roy Choudhury K, et al. Characterization of Small Focal Renal Lesions: Diagnostic Accuracy with Single-Phase Contrast-enhanced Dual-Energy CT with Material Attenuation Analysis Compared with Conventional Attenuation Measurements. Radiology. 2017;284(3):737-47.

    PubMed  Google Scholar 

  26. Patel BN, Alexander L, Allen B, et al. Dual-energy CT workflow: multi-institutional consensus on standardization of abdominopelvic MDCT protocols. Abdom Radiol (NY). 2016.

  27. Patel BN, Bibbey A, Choudhury KR, Leder RA, Nelson RC, Marin D. Characterization of Small (< 4 cm) Focal Renal Lesions: Diagnostic Accuracy of Spectral Analysis Using Single-Phase Contrast-Enhanced Dual-Energy CT. AJR Am J Roentgenol. 2017;209(4):815-25

    PubMed  Google Scholar 

  28. Jung DC, Oh YT, Kim MD, Park M. Usefulness of the virtual monochromatic image in dual-energy spectral CT for decreasing renal cyst pseudoenhancement: a phantom study. AJR Am J Roentgenol. 2012;199(6):1316-9.

    PubMed  Google Scholar 

  29. Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology. 2014;271(2):327-42.

    PubMed  Google Scholar 

  30. Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology. 2011;259(1):257-62.

    PubMed  Google Scholar 

  31. Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38(12):6371-9.

    PubMed  PubMed Central  Google Scholar 

  32. Patel BN, Vernuccio F, Meyer M, et al. Dual-Energy CT Material Density Iodine Quantification for Distinguishing Vascular From Nonvascular Renal Lesions: Normalization Reduces Intermanufacturer Threshold Variability. AJR Am J Roentgenol. 2019;212(2):366-76.

    PubMed  Google Scholar 

  33. Chandarana H, Megibow AJ, Cohen BA, et al. Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol. 2011;196(6):W693-700.

    PubMed  Google Scholar 

  34. Mileto A, Marin D, Alfaro-Cordoba M, et al. Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology. 2014;273(3):813-20.

    PubMed  Google Scholar 

  35. Zarzour JG, Milner D, Valentin R, et al. Quantitative iodine content threshold for discrimination of renal cell carcinomas using rapid kV-switching dual-energy CT. Abdom Radiol (NY). 2017;42(3):727-34.

    PubMed  Google Scholar 

  36. Bellini D, Panvini N, Laghi A, et al. Systematic Review and Meta-Analysis Investigating the Diagnostic Yield of Dual-Energy CT for Renal Mass Assessment. AJR Am J Roentgenol. 2019:1-10.

  37. Weinstein MC, Siegel JE, Gold MR, Kamlet MS, Russell LB. Recommendations of the Panel on Cost-Effectiveness in Health and Medicine. JAMA. 1996;276(15):1253-8.

    CAS  PubMed  Google Scholar 

  38. Health UDo, Services H. Cost-effectiveness in health and medicine: Report to the US Public Health Service by the Panel on cost-effectiveness in health and medicine. Cost-effectiveness in health and medicine: report to the US Public Health Service by the Panel on Cost-Effectiveness in Health and Medicine: US Department of Health and Human Services, 1996.

  39. Sanders GD, Neumann PJ, Basu A, et al. Recommendations for Conduct, Methodological Practices, and Reporting of Cost-effectiveness Analyses: Second Panel on Cost-Effectiveness in Health and Medicine. JAMA. 2016;316(10):1093-103.

    PubMed  Google Scholar 

  40. Kang SK, Huang WC, Pandharipande PV, Chandarana H. Solid renal masses: what the numbers tell us. AJR Am J Roentgenol. 2014;202(6):1196-206.

    PubMed  PubMed Central  Google Scholar 

  41. Heilbrun ME, Remer EM, Casalino DD, et al. ACR Appropriateness Criteria indeterminate renal mass. J Am Coll Radiol. 2015;12(4):333-41.

    PubMed  Google Scholar 

  42. Sun M, Abdollah F, Bianchi M, et al. Treatment management of small renal masses in the 21st century: a paradigm shift. Ann Surg Oncol. 2012;19(7):2380-7.

    PubMed  Google Scholar 

  43. Pandharipande PV, Gervais DA, Hartman RI, et al. Renal mass biopsy to guide treatment decisions for small incidental renal tumors: a cost-effectiveness analysis. Radiology. 2010;256(3):836-46.

    PubMed  PubMed Central  Google Scholar 

  44. Sonnenberg FA, Beck JR. Markov models in medical decision making: a practical guide. Med Decis Making. 1993;13(4):322-38.

    CAS  PubMed  Google Scholar 

  45. SEER Incidence Data, 1975-2016. November 2018 ed: National Cancer Institute.

  46. Halpern EF, Pandharipande PV. Behind the Numbers: Sensitivity Analysis in Cost-Effectiveness Modeling. Radiology. 2017;284(2):310-2.

    PubMed  Google Scholar 

  47. Briggs AH, O’Brien BJ, Blackhouse G. Thinking outside the box: recent advances in the analysis and presentation of uncertainty in cost-effectiveness studies. Annu Rev Public Health. 2002;23:377-401.

    PubMed  Google Scholar 

  48. Ho VB, Allen SF, Hood MN, Choyke PL. Renal masses: quantitative assessment of enhancement with dynamic MR imaging. Radiology. 2002;224(3):695-700.

    PubMed  Google Scholar 

  49. Taouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology. 2009;251(2):398-407.

    PubMed  Google Scholar 

  50. Klinghoffer Z, Tarride JE, Novara G, et al. Cost-utility analysis of radical nephrectomy versus partial nephrectomy in the management of small renal masses: Adjusting for the burden of ensuing chronic kidney disease. Can Urol Assoc J. 2013;7(3-4):108-13.

    PubMed  PubMed Central  Google Scholar 

  51. Faubel S, Patel NU, Lockhart ME, Cadnapaphornchai MA. Renal relevant radiology: use of ultrasonography in patients with AKI. Clin J Am Soc Nephrol. 2014;9(2):382-94.

    PubMed  Google Scholar 

  52. Vogelzang NJ, Pal SK, Ghate SR, et al. Real-World Economic Outcomes During Time on Treatment Among Patients Who Initiated Sunitinib or Pazopanib as First Targeted Therapy for Advanced Renal Cell Carcinoma: A Retrospective Analysis of Medicare Claims Data. J Manag Care Spec Pharm. 2018;24(6):525-33.

    PubMed  Google Scholar 

  53. Corwin MT, Hansra SS, Loehfelm TW, Lamba R, Fananapazir G. Prevalence of Solid Tumors in Incidentally Detected Homogeneous Renal Masses Measuring > 20 HU on Portal Venous Phase CT. AJR Am J Roentgenol. 2018;211(3):W173-W7.

    PubMed  Google Scholar 

  54. Saad AM, Gad MM, Al-Husseini MJ, Ruhban IA, Sonbol MB, Ho TH. Trends in Renal-Cell Carcinoma Incidence and Mortality in the United States in the Last 2 Decades: A SEER-Based Study. Clin Genitourin Cancer. 2019;17(1):46-57 e5.

  55. Sun M, Thuret R, Abdollah F, et al. Age-adjusted incidence, mortality, and survival rates of stage-specific renal cell carcinoma in North America: a trend analysis. Eur Urol. 2011;59(1):135-41.

    PubMed  Google Scholar 

  56. Pandharipande PV, Gervais DA, Mueller PR, Hur C, Gazelle GS. Radiofrequency ablation versus nephron-sparing surgery for small unilateral renal cell carcinoma: cost-effectiveness analysis. Radiology. 2008;248(1):169-78.

    PubMed  PubMed Central  Google Scholar 

  57. Hoyle M, Green C, Thompson-Coon J, et al. Cost-effectiveness of sorafenib for second-line treatment of advanced renal cell carcinoma. Value Health. 2010;13(1):55-60.

    PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavik N. Patel.

Ethics declarations

Conflict of interest

BNP—research support (GE and Siemens), speaker’s bureau (GE). AB & GM—employees of Siemens. DM, RJ, BC, PP, and AK—no relevant disclosures. DaM—research support (Siemens).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16026 kb)

Supplementary material 2 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, B.N., Boltyenkov, A.T., Martinez, M.G. et al. Cost-effectiveness of dual-energy CT versus multiphasic single-energy CT and MRI for characterization of incidental indeterminate renal lesions. Abdom Radiol 45, 1896–1906 (2020). https://doi.org/10.1007/s00261-019-02380-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02380-x

Keywords

Navigation