Skip to main content

Advertisement

Log in

Update on MR urography (MRU): technique and clinical applications

  • Special Section : Urothelial Disease
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging of the upper tract (pyelocalyces and ureters) or MR Urography (MRU) is technically possible and when performed correctly offers similar visualization of the upper tracts and for detection of non-calculous diseases of the collecting system similar specificity but with lower sensitivity compared to CTU. MRU provides the ability to simultaneously image the kidneys and urinary bladder with improved soft tissue resolution, better tissue characterization and when combined with assessment of the upper tract, a comprehensive examination of the urinary system. MRU requires meticulous attention to technical details and is a longer more demanding examination compared to CTU. Advances in MR imaging techniques including: parallel imaging, free-breathing motion compensation techniques and compressed sensing can dramatically shorten examination times and improve image quality and patient tolerance for the exam. This review article discusses updates in the MRU technique, summarizes clinical indications and opportunities for MRU in clinical practice and reviews advantages and disadvantages of MRU compared to CTU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeikus E, Sura G, Hindman N, Fielding JR (2018) Tumors of Renal Collecting Systems, Renal Pelvis, and Ureters. Magn Reson Imaging Clin N Am. 27(1):15–32

    Google Scholar 

  2. Leyendecker JR, Clingan MJ (2009) Magnetic Resonance Urography Update-Are We There Yet? Semin Ultrasound, CT MRI. 30(4):246–257

    Google Scholar 

  3. Silverman SG, Leyendecker JR, Amis ES (2009) What Is the Current Role of CT Urography and MR Urography in the Evaluation of the Urinary Tract? Radiology. 250(2):309–323

    PubMed  Google Scholar 

  4. Potenta SE, D’Agostino R, Sternberg KM, Tatsumi K, Perusse K (2015) CT Urography for Evaluation of the Ureter. Radiographics. 35:709–726

    PubMed  Google Scholar 

  5. Raman SP, Fishman EK (2018) Upper and Lower Tract Urothelial Imaging Using Computed Tomography Urography. Urol Clin North Am. 45(3):389–405

    PubMed  Google Scholar 

  6. Jinzaki M, Kikuchi E, Akita H, et al. (2016) Role of computed tomography urography in the clinical evaluation of upper tract urothelial carcinoma. Int J Urol. 23(4):284–298

    PubMed  Google Scholar 

  7. Razavi SA, Sadigh G, Kelly AM, Cronin P (2012) Comparative Effectiveness of Imaging Modalities for the Diagnosis of Upper and Lower Urinary Tract Malignancy: A Critically Appraised Topic. Acad Radiol. 19(9):1134–1140

    PubMed  Google Scholar 

  8. Sudah M, Masarwah A, Kainulainen S, et al. (2016) Comprehensive MR urography protocol: Equally good diagnostic performance and enhanced visibility of the upper urinary tract compared to triple-phase CT urography. PLoS One. 11(7):1–12

    Google Scholar 

  9. Shanbhogue AK, Dilauro M, Schieda N, et al. (2016) MRI Evaluation of the Urothelial Tract: Pitfalls and Solutions. Am J Roentgenol. 207(6):W108–W116

    Google Scholar 

  10. Zand KR, Reinhold C, Haider MA, et al. (2007) Artifacts and pitfalls in MR imaging of the pelvis. J Magn Reson Imaging. 26(3):480–497

    PubMed  Google Scholar 

  11. Hamilton J, Franson D, Seiberlich N (2017) Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc. 101:71–95

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Leyendecker JR, Barnes CE, Zagoria RJ (2008) MR Urography: Techniques and Clinical Applications. RadioGraphics. 28(1):23–46

    PubMed  Google Scholar 

  13. Hoosein MM, Rajesh A (2014) MR imaging of the urinary bladder. Magn Reson Imaging Clin N Am. 22(2):129–134

    PubMed  Google Scholar 

  14. Battal B (2015) Split-bolus MR urography: synchronous visualization of obstructing vessels and collecting system in children. Diagn Interv Radiol. 21:498–502

    PubMed  PubMed Central  Google Scholar 

  15. Nolte-ernsting CCA, Adam GB, Günther RW (2001) MR urography : examination techniques and clinical applications. Eur Radiol. 11:355–372

    CAS  PubMed  Google Scholar 

  16. Weadock WJ, Korobkin M, Ergen FB, et al. (2007) 3D excretory MR urography: Improved image quality with intravenous saline and diuretic administration. J Magn Reson Imaging. 25(4):783–789

    PubMed  Google Scholar 

  17. Dym RJ, Chernyak V, Rozenblit AM (2013) MR imaging of renal collecting system with gadoxetate disodium: Feasibility for MR urography. J Magn Reson Imaging. 38(4):816–823

    PubMed  Google Scholar 

  18. Moosavi B, Schieda N, Flood TA, McInnes MDF, Ramamurthy NK (2014) Multiparametric MRI of solid renal masses: pearls and pitfalls. Clin Radiol. 70(3):304–316

    PubMed  Google Scholar 

  19. Leyendecker JR, Gianini JW (2009) Magnetic Resonance Urography. Abdom Imaging. 34:527–540

    PubMed  Google Scholar 

  20. Bhargava P, Dighe MK, Lee JH, Wang C (2012) Multimodality Imaging of Ureteric Disease. Radiol Clin North Am. 50(2):271–299

    PubMed  Google Scholar 

  21. Kim S, Jacob JS, Kim DC, et al. (2008) Time-resolved dynamic contrast-enhanced MR urography for the evaluation of ureteral peristalsis: Initial experience. J Magn Reson Imaging. 28(5):1293–1298

    PubMed  Google Scholar 

  22. Yoshida S, Masuda H, Ishii C, et al. (2011) Usefulness of diffusion-weighted MRI in diagnosis of upper urinary tract cancer. Am J Roentgenol. 196(1):110–116

    Google Scholar 

  23. Pol CB Van Der, Chung A, Lim C, Gandhi N, Tu W, Mcinnes MDF, et al. Update on Multiparametric MRI of Urinary Bladder Cancer. J Magn Reson Imaging. 2018;1–15.

  24. Panebianco V, Narumi Y, Altun E, et al. (2018) Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI-RADS (Vesical Imaging-Reporting And Data System). Eur Urol. 74(3):294–306

    PubMed  PubMed Central  Google Scholar 

  25. Lassel EA, Rao R, Schwenke C, Schoenberg SO, Michaely HJ (2014) Diffusion-weighted imaging of focal renal lesions: A meta-analysis. Eur Radiol. 24(1):241–249

    CAS  PubMed  Google Scholar 

  26. Charles-Edwards EM, De Souza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging. 6(1):135–143

    PubMed  PubMed Central  Google Scholar 

  27. Maurer MH, Härmä KH, Thoeny H (2018) Diffusion-Weighted Genitourinary Imaging. Urol Clin North Am. 45(3):407–425

    PubMed  Google Scholar 

  28. Qayyum A (2009) Diffusion-weighted Imaging in the Abdomen and Pelvis: Concepts and Applications. RadioGraphics. 29(6):1797–1810

    PubMed  Google Scholar 

  29. Koh Dow-Mu, Collins David J. Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. Am J Roentgenol. 2007;188(6):1622–35.

  30. Fujii Y, Kihara K, Koga F, Masuda H, Yoshida S (2014) Role of diffusion-weighted magnetic resonance imaging as an imaging biomarker of urothelial carcinoma. Int J Urol. 21(12):1190–1200

    PubMed  Google Scholar 

  31. Okaneya T, Nishizawa S, Kamigaito T, et al. (2010) Diffusion weighted imaging in the detection of upper urinary tract urothelial tumors. Int braz j urol. 36(1):18–28

    PubMed  Google Scholar 

  32. Akita H, Jinzaki M, Kikuchi E, et al. (2011) Preoperative T categorization and prediction of histopathologic grading of urothelial carcinoma in renal pelvis using diffusion-weighted MRI. Am J Roentgenol. 197(5):1130–1136

    Google Scholar 

  33. Grant KB, Wood BJ, Agarwal HK, et al. (2014) Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom Imaging. 40(3):578–586

    Google Scholar 

  34. Rosenkrantz AB, Chandarana H, Hindman N, et al. (2013) Computed diffusion-weighted imaging of the prostate at 3 T: Impact on image quality and tumour detection. Eur Radiol. 23(11):3170–3177

    PubMed  Google Scholar 

  35. Correa AF, Yankey H, Li T, et al. (2019) Renal Hilar Lesions: Biological Implications for Complex Partial Nephrectomy. Urology. 123:174–180

    PubMed  Google Scholar 

  36. Choi K, McCafferty R, Deem S (2017) Contemporary management of upper tract urothelial cell carcinoma. World J Clin Urol. 6(1):1

    Google Scholar 

  37. Krishna S, Schieda N, Flood TA, et al. (2018) Magnetic resonance imaging (MRI) of the renal sinus. Abdom Radiol. 43(11):3082–3100

    Google Scholar 

  38. Wehrli NE, Kim MJ, Matza BW, et al. (2013) Utility of MRI features in differentiation of central renal cell carcinoma and renal pelvic urothelial carcinoma. Am J Roentgenol. 201(6):1260–1267

    Google Scholar 

  39. Schieda N, Davenport MS, Pedrosa I, et al. (2019) Renal and adrenal masses containing fat at MRI: Proposed nomenclature by the society of abdominal radiology disease-focused panel on renal cell carcinoma. J Magn Reson Imaging. 49(4):917–926

    PubMed  Google Scholar 

  40. Schieda, N.; Krishna S, ; Davenport M. Update on Gadolinium-Based Contrast Agent-Enhanced Imaging in the Genitourinary System. Am J Roentgenol. 2019;11:1–11.

  41. Flood TA, Shabana WM, Schieda N, et al. (2015) Diagnosis of Sarcomatoid Renal Cell Carcinoma With CT: Evaluation by Qualitative Imaging Features and Texture Analysis. Am J Roentgenol. 204(5):1013–1023

    Google Scholar 

  42. Zhang GMY, Sun H, Shi B, Jin ZY, Xue HD (2017) Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma. Abdom Radiol. 42(2):561–568

    Google Scholar 

  43. Mammen S, Krishna S, Quon M, et al. (2018) Diagnostic Accuracy of Qualitative and Quantitative Computed Tomography Analysis for Diagnosis of Pathological Grade and Stage in Upper Tract Urothelial Cell Carcinoma. J Comput Assist Tomogr. 42(2):204–210

    PubMed  Google Scholar 

  44. Liu ZH, Shi JY, Wang HY, et al. (2018) CT texture analysis in bladder carcinoma: histologic grade characterization. Zhonghua Zhong Liu Za Zhi. 40(5):379–383

    CAS  PubMed  Google Scholar 

  45. Lim CS, Tirumani S, van der Pol CB, et al. (2019) Use of Quantitative T2-Weighted and Apparent Diffusion Coefficient Texture Features of Bladder Cancer and Extravesical Fat for Local Tumor Staging After Transurethral Resection. AJR Am J Roentgenol. 12:1–10

    Google Scholar 

  46. Patino M, Fuentes JM, Singh S, Hahn PF, Sahani DV (2015) Iterative reconstruction techniques in abdominopelvic CT: Technical concepts and clinical implementation. Am J Roentgenol. 205(1):W19–W31

    Google Scholar 

  47. Padole A, Khawaja RDA, Kalra MK, Singh S (2015) CT radiation dose and iterative reconstruction techniques. Am J Roentgenol. 204(4):W384–W392

    Google Scholar 

  48. Wu D, Kim K, El Fakhri G, Li Q (2017) Iterative Low-Dose CT Reconstruction With Priors Trained by Artificial Neural Network. IEEE Trans Med Imaging. 36(12):2479–2486

    PubMed  PubMed Central  Google Scholar 

  49. McCarthy CJ, Baliyan V, Kordbacheh H, Sajjad Z, Sahani D, Kambadakone A. Radiology of renal stone disease. Int J Surg. 2016;36(PD):638–46.

    PubMed  Google Scholar 

  50. Kalb B, Sharma P, Salman K, et al. (2010) Acute abdominal pain: Is there a potential role for MRI in the setting of the emergency department in a patient with renal calculi? J Magn Reson Imaging. 32(5):1012–1023

    PubMed  Google Scholar 

  51. Eisner BH, McQuaid JW, Hyams E, Matlaga BR (2011) Nephrolithiasis: What surgeons need to know. Am J Roentgenol. 196(6):1274–1278

    Google Scholar 

  52. Shokeir AA, El-Diasty T, Eassa W, Mosbah A, El-Ghar MA, Mansour O, et al. Diagnosis of ureteral obstruction in patients with compromised renal function: The role of noninvasive imaging modalities. J Urol. 2004;171(6 I):2303–6.

    PubMed  Google Scholar 

  53. Hiorns MP (2011) Imaging of the urinary tract: The role of CT and MRI. Pediatr Nephrol. 26(1):59–68

    PubMed  Google Scholar 

  54. Roy C, Labani A, Alemann G, et al. (2016) DWI in the Etiologic Diagnosis of Excretory Upper Urinary Tract Lesions: Can It help in Differentiating Benign From Malignant Tumors? A Retrospective Study of 98 Patients. Am J Roentgenol. 207(1):106–113

    Google Scholar 

  55. Oh SN, Choi Y-J, Lee JM, Jung SE, Byun JY, Rha SE, et al. The Renal Sinus: Pathologic Spectrum and Multimodality Imaging Approach. RadioGraphics. 2007;24(suppl_1):S117–31.

  56. Vikram R, Sandler CM, Ng CS (2009) Imaging and staging of transitional cell carcinoma: part 2, upper urinary tract. AJR Am J Roentgenol. 192(6):1488–1493

    PubMed  Google Scholar 

  57. Vikram R, Sandler CM, Ng CS (2009) Imaging and staging of transitional cell carcinoma: Part 1, lower urinary tract. Am J Roentgenol. 192(6):1481–1487

    Google Scholar 

  58. Lee CH, Tan CH, De Castro Faria S, Kundra V (2017) Role of imaging in the local staging of urothelial carcinoma of the bladder. Am J Roentgenol. 208(6):1193–1205

    Google Scholar 

  59. Mao Y, Kilcoyne A, Hedgire S, et al. (2016) Patterns of recurrence in upper tract transitional cell carcinoma: Imaging surveillance. Am J Roentgenol. 207(4):789–796

    Google Scholar 

  60. Duarte S, Figueiredo F, Cruz J, et al. (2018) Infectious and Inflammatory Diseases of the Urinary Tract. Magn Reson Imaging Clin N Am. 27(1):59–75

    PubMed  Google Scholar 

  61. Cronin CG, Lohan DG, Blake MA, et al. (2008) Retroperitoneal Fibrosis: A Review of Clinical Features and Imaging Findings. Am J Roentgenol. 191(2):423–431

    Google Scholar 

  62. Cohan RH, Francis IR, Kaza RK, et al. (2011) Multimodality Imaging in Ureteric and Periureteric Pathologic Abnormalities. Am J Roentgenol. 197(6):W1083–W1092

    Google Scholar 

  63. Rajiah P, Sinha R, Cuevas C, et al. (2011) Imaging of Uncommon Retroperitoneal Masses. RadioGraphics. 31(4):949–976

    PubMed  Google Scholar 

  64. Goenka AH, Shah SN, Remer EM (2012) Imaging of the Retroperitoneum. Radiol Clin North Am 50(2):333–355

    PubMed  Google Scholar 

  65. Kamper L, Brandt AS, Scharwächter C, et al. (2011) MR evaluation of retroperitoneal fibrosis. RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgeb Verfahren. 183(8):721–726

    CAS  Google Scholar 

  66. Vaglio A, Salvarani C, Buzio C (2006) Retroperitoneal fibrosis. Lancet (London, England). 367(9506):241–251

    Google Scholar 

  67. Burn PR, Singh S, Barbar S, Boustead G, King CM (2002) Role of gadolinium-enhanced magnetic resonance imaging in retroperitoneal fibrosis. Can Assoc Radiol J. 53(3):168–170

    PubMed  Google Scholar 

  68. Kamper L, Brandt AS, Ekamp H, et al. (2014) Diffusion-weighted MRI findings of treated and untreated retroperitoneal fibrosis. Diagn Interv Radiol. 20(6):459–463

    PubMed  PubMed Central  Google Scholar 

  69. Katabathina VS, Khalil S, Shin S, et al. (2016) Immunoglobulin G4-Related Disease: Recent Advances in Pathogenesis and Imaging Findings. Radiol Clin North Am. 54(3):535–551

    PubMed  Google Scholar 

  70. Hedgire SS, McDermott S, Borczuk D, et al. (2013) The spectrum of IgG4-related disease in the abdomen and pelvis. AJR Am J Roentgenol. 201(1):14–22

    PubMed  Google Scholar 

  71. Tan TJ, Ng YL, Tan D, Fong WS, Low ASC (2014) Extrapancreatic findings of IgG4-related disease. Clin Radiol. 69:209–218

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Schieda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu-Gomez, J., Udare, A., Shanbhogue, K.P. et al. Update on MR urography (MRU): technique and clinical applications. Abdom Radiol 44, 3800–3810 (2019). https://doi.org/10.1007/s00261-019-02085-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02085-1

Keywords

Navigation