Skip to main content

Advertisement

Log in

Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review

  • Special Section: Rectal Cancer
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Introduction

As computational capabilities have advanced, radiologists and their collaborators have looked for novel ways to analyze diagnostic images. This has resulted in the development of radiomics and radiogenomics as new fields in medical imaging. Radiomics and radiogenomics may change the practice of medicine, particularly for patients with colorectal cancer. Radiomics corresponds to the extraction and analysis of numerous quantitative imaging features from conventional imaging modalities in correlation with several endpoints, including the prediction of pathology, genomics, therapeutic response, and clinical outcome. In radiogenomics, qualitative and/or quantitative imaging features are extracted and correlated with genetic profiles of the imaged tissue. Thus far, several studies have evaluated the use of radiomics and radiogenomics in patients with colorectal cancer; however, there are challenges to be overcome before its routine implementation including challenges related to sample size, model design and interpretability, and the lack of robust multicenter validation set.

Material and methods

In this article, we will review the concepts of radiomics and radiogenomics and their potential applications in rectal cancer.

Conclusion

Radiologists should be aware of the basic concepts, benefits, pitfalls, and limitations of new radiomic and radiogenomics techniques to achieve a balanced interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278(2):563-77.

    PubMed  Google Scholar 

  2. Wu W, Parmar C, Grossmann P, et al. Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology. Front Oncol. 2016;6:71.

    PubMed  PubMed Central  Google Scholar 

  3. Beig N, Khorrami M, Alilou M, et al. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology. 2018:180910.

  4. Kickingereder P, Gotz M, Muschelli J, et al. Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response. Clin Cancer Res. 2016;22(23):5765-71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol. 2016;119(3):480-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Horvat N, Veeraraghavan H, Khan M, et al. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology. 2018;287(3):833-43.

    Article  PubMed  Google Scholar 

  7. Andreassen CN, Alsner J, Overgaard J. Does variability in normal tissue reactions after radiotherapy have a genetic basis–where and how to look for it? Radiother Oncol. 2002;64(2):131-40.

    Article  PubMed  Google Scholar 

  8. Pinker K, Shitano F, Sala E, et al. Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging. 2018;47(3):604-20.

    Article  PubMed  Google Scholar 

  9. Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2017;72(1):3-10.

    Article  CAS  PubMed  Google Scholar 

  10. Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT. Cancer Imaging. 2013;13:140-9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haralick RM, Shanmugam K, Dinstein I. Textural Features for Image Classification. Ieee Transactions on Systems Man and Cybernetics. 1973;Smc3(6):610-21.

  12. Larue RT, Defraene G, De Ruysscher D, et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol. 2017;90(1070):20160665.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berenguer R, Pastor-Juan MDR, Canales-Vázquez J, et al. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology. 2018;288(2):407-15.

    Article  PubMed  Google Scholar 

  14. Lubner MG, Smith AD, Sandrasegaran K, et al. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics. 2017;37(5):1483-503.

    Article  PubMed  Google Scholar 

  15. Lubner MG, Stabo N, Abel EJ, et al. CT Textural Analysis of Large Primary Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and Clinical Outcomes. AJR Am J Roentgenol. 2016;207(1):96-105.

    Article  PubMed  Google Scholar 

  16. Miles KA, Ganeshan B, Hayball MP. CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging. 2013;13(3):400-6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research. 2002;16:321-57.

    Article  Google Scholar 

  18. Fehr D, Veeraraghavan H, Wibmer A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci U S A. 2015;112(46):E6265-73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bibault JE, Giraud P, Housset M, et al. Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep. 2018;8(1):12611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen LD, Liang JY, Wu H, et al. Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics. Life Sci. 2018;208:55-63.

    Article  CAS  PubMed  Google Scholar 

  21. Huang Y, He L, Dong D, et al. Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model. Chin J Cancer Res. 2018;30(1):40-50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang X, Cheng Z, Huang Y, et al. CT-based Radiomics Signature to Discriminate High-grade From Low-grade Colorectal Adenocarcinoma. Acad Radiol. 2018;25(10):1285-97.

    Article  PubMed  Google Scholar 

  23. Liu H, Zhang C, Wang L, et al. MRI radiomics analysis for predicting preoperative synchronous distant metastasis in patients with rectal cancer. Eur Radiol. 2018.

  24. Aker M, Boone D, Chandramohan A, et al. Diagnostic accuracy of MRI in assessing tumor regression and identifying complete response in patients with locally advanced rectal cancer after neoadjuvant treatment. Abdom Radiol (NY). 2018.

  25. Yang L, Dong D, Fang M, et al. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? Eur Radiol. 2018;28(5):2058-67.

    Article  PubMed  Google Scholar 

  26. Meng X, Xia W, Xie P, et al. Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer. Eur Radiol. 2018.

  27. Gourtsoyianni S, Doumou G, Prezzi D, et al. Primary Rectal Cancer: Repeatability of Global and Local-Regional MR Imaging Texture Features. Radiology. 2017;284(2):552-61.

    Article  PubMed  Google Scholar 

  28. Badic B, Desseroit MC, Hatt M, Visvikis D. Potential Complementary Value of Noncontrast and Contrast Enhanced CT Radiomics in Colorectal Cancers. Acad Radiol. 2018.

  29. Horvat N, Veeraraghavan H, Khan M, et al. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology. 2018:172300.

  30. Habr-Gama A, Perez RO, Nadalin W, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240(4):711-7; discussion 7-8.

  31. Smith JJ, Strombom P, Chow OS, et al. Assessment of a Watch-and-Wait Strategy for Rectal Cancer in Patients With a Complete Response After Neoadjuvant Therapy. JAMA Oncol. 2019:e185896.

  32. De Cecco CN, Ganeshan B, Ciolina M, et al. Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Invest Radiol. 2015;50(4):239-45.

    Article  CAS  PubMed  Google Scholar 

  33. De Cecco CN, Ciolina M, Caruso D, et al. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY). 2016;41(9):1728-35.

    Article  PubMed  Google Scholar 

  34. Meng Y, Zhang C, Zou S, et al. MRI texture analysis in predicting treatment response to neoadjuvant chemoradiotherapy in rectal cancer. Oncotarget. 2018;9(15):11999-2008.

    Article  PubMed  Google Scholar 

  35. Aker M, Ganeshan B, Afaq A, et al. Magnetic Resonance Texture Analysis in Identifying Complete Pathological Response to Neoadjuvant Treatment in Locally Advanced Rectal Cancer. Dis Colon Rectum. 2019;62(2):163-70.

    Article  PubMed  Google Scholar 

  36. Cusumano D, Dinapoli N, Boldrini L, et al. Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol Med. 2017.

  37. Cui Y, Yang X, Shi Z, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol. 2018.

  38. Liu Z, Zhang XY, Shi YJ, et al. Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Clin Cancer Res. 2017;23(23):7253-62.

    Article  CAS  PubMed  Google Scholar 

  39. Nie K, Shi L, Chen Q, et al. Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI. Clin Cancer Res. 2016;22(21):5256-64.

    Article  PubMed  Google Scholar 

  40. Chee CG, Kim YH, Lee KH, et al. CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: A potential imaging biomarker for treatment response and prognosis. PLoS One. 2017;12(8):e0182883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang C, Huang Y, He L, et al. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. Oncotarget. 2016;7(21):31401-12.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun Y, Hu P, Wang J, et al. Radiomic features of pretreatment MRI could identify T stage in patients with rectal cancer: Preliminary findings. J Magn Reson Imaging. 2018.

  43. Li W, Jiang Z, Guan Y, et al. Whole-lesion Apparent Diffusion Coefficient First- and Second-Order Texture Features for the Characterization of Rectal Cancer Pathological Factors. J Comput Assist Tomogr. 2018;42(4):642-7.

    PubMed  Google Scholar 

  44. Huang YQ, Liang CH, He L, et al. Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J Clin Oncol. 2016;34(18):2157-64.

    Article  PubMed  Google Scholar 

  45. van Helden EJ, Vacher YJL, van Wieringen WN, et al. Radiomics analysis of pre-treatment [Eur J Nucl Med Mol Imaging. 2018;45(13):2307-17.

  46. Lovinfosse P, Polus M, Van Daele D, et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging. 2018;45(3):365-75.

    Article  PubMed  Google Scholar 

  47. Meng Y, Zhang Y, Dong D, et al. Novel radiomic signature as a prognostic biomarker for locally advanced rectal cancer. J Magn Reson Imaging. 2018.

  48. Jalil O, Afaq A, Ganeshan B, et al. Magnetic resonance based texture parameters as potential imaging biomarkers for predicting long-term survival in locally advanced rectal cancer treated by chemoradiotherapy. Colorectal Dis. 2017;19(4):349-62.

    Article  CAS  PubMed  Google Scholar 

  49. Shin YR, Kim KA, Im S, et al. Prediction of KRAS Mutation in Rectal Cancer Using MRI. Anticancer Res. 2016;36(9):4799-804.

    Article  CAS  PubMed  Google Scholar 

  50. Mao W, Zhou J, Zhang H, et al. Relationship between KRAS mutations and dual time point (18)F-FDG PET/CT imaging in colorectal liver metastases. Abdom Radiol (NY). 2018.

  51. Pershad Y, Govindan S, Hara AK, et al. Using Naive Bayesian Analysis to Determine Imaging Characteristics of KRAS Mutations in Metastatic Colon Cancer. Diagnostics (Basel). 2017;7(3).

  52. Oner AO, Budak ES, Yildirim S, et al. The value of (18)FDG PET/CT parameters, hematological parameters and tumor markers in predicting KRAS oncogene mutation in colorectal cancer. Hell J Nucl Med. 2017;20(2):160-5.

    PubMed  Google Scholar 

  53. Kawada K, Toda K, Nakamoto Y, et al. Relationship Between 18F-FDG PET/CT Scans and KRAS Mutations in Metastatic Colorectal Cancer. J Nucl Med. 2015;56(9):1322-7.

    Article  CAS  PubMed  Google Scholar 

  54. Miles KA, Ganeshan B, Rodriguez-Justo M, et al. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer. J Nucl Med. 2014;55(3):386-91.

    Article  CAS  PubMed  Google Scholar 

  55. Krikelis D, Skoura E, Kotoula V, et al. Lack of association between KRAS mutations and 18F-FDG PET/CT in Caucasian metastatic colorectal cancer patients. Anticancer Res. 2014;34(5):2571-9.

    PubMed  Google Scholar 

  56. Chen SW, Chiang HC, Chen WT, et al. Correlation between PET/CT parameters and KRAS expression in colorectal cancer. Clin Nucl Med. 2014;39(8):685-9.

    Article  PubMed  Google Scholar 

  57. Mariani P, Lae M, Degeorges A, et al. Concordant analysis of KRAS status in primary colon carcinoma and matched metastasis. Anticancer Res. 2010;30(10):4229-35.

    CAS  PubMed  Google Scholar 

  58. Santini D, Loupakis F, Vincenzi B, et al. High concordance of KRAS status between primary colorectal tumors and related metastatic sites: implications for clinical practice. Oncologist. 2008;13(12):1270-5.

    Article  CAS  PubMed  Google Scholar 

  59. Lubner MG, Stabo N, Lubner SJ, et al. CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging. 2015;40(7):2331-7.

    Article  PubMed  Google Scholar 

  60. Chen SW, Lin CY, Ho CM, et al. Genetic Alterations in Colorectal Cancer Have Different Patterns on 18F-FDG PET/CT. Clin Nucl Med. 2015;40(8):621-6.

    Article  PubMed  Google Scholar 

  61. Lovinfosse P, Koopmansch B, Lambert F, et al. (18)F-FDG PET/CT imaging in rectal cancer: relationship with the RAS mutational status. Br J Radiol. 2016;89(1063):20160212.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part through the NIH/NCI Cancer Center Support Grant P30 CA008748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iva Petkovska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvat, N., Bates, D.D.B. & Petkovska, I. Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review. Abdom Radiol 44, 3764–3774 (2019). https://doi.org/10.1007/s00261-019-02042-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02042-y

Keywords

Navigation