Skip to main content

Advertisement

Log in

Response assessment in pancreatic ductal adenocarcinoma: role of imaging

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive gastrointestinal (GI) malignancy with poor 5-year survival rate. Advances in surgical techniques and introduction of novel combination chemotherapy and radiation therapy regimens have necessitated the need for biomarkers for assessment of treatment response. Conventional imaging methods such as RECIST have been used for response evaluation in clinical trials particularly in patients with metastatic PDAC. However, the role of these approaches for assessing response to loco-regional and systemic therapies is limited due to complex morphological and histological nature of PDAC. Determination of tumor resectability after neoadjuvant therapy remains a challenge. This review article provides an overview of the challenges and limitations of response assessment in PDAC and reviews the current evidence for the utility of novel morphological and functional imaging tools in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cancer facts and figures 2016—acspc-047079.pdf. [Cited 2016 Dec 2]. http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-047079.pdf. Accessed 10 Oct 2017

  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA 60(5):277–300

    PubMed  Google Scholar 

  3. Ferrone CR, Brennan MF, Gonen M, et al. (2008) Pancreatic adenocarcinoma: the actual 5-year survivors. J Gastrointest Surg 12(4):701–706

    Article  PubMed  Google Scholar 

  4. Winter JM, Cameron JL, Campbell KA, et al. (2006) 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J Gastrointest Surg. 10(9):1199–1210 ((discussion 1210–1211))

    Article  PubMed  Google Scholar 

  5. Ferrone CR, Pieretti-Vanmarcke R, Bloom JP, et al. (2012) Pancreatic ductal adenocarcinoma: long-term survival does not equal cure. Surgery 152(3 Suppl 1):S43–S49

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cancer of the pancreas—SEER stat fact sheets. [Cited 2016 Jan 10]. http://seer.cancer.gov/statfacts/html/pancreas.html. Accessed 10 Oct 2017

  7. Ko AH, Quivey JM, Venook AP, et al. (2007) A phase II study of fixed-dose rate gemcitabine plus low-dose cisplatin followed by consolidative chemoradiation for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 68(3):809–816

    Article  CAS  PubMed  Google Scholar 

  8. Ben-Josef E, Shields AF, Vaishampayan U, et al. (2004) Intensity-modulated radiotherapy (IMRT) and concurrent capecitabine for pancreatic cancer. Int J Radiat Oncol Biol Phys 59(2):454–459

    Article  CAS  PubMed  Google Scholar 

  9. Bittoni A, Santoni M, Lanese A, et al. (2014) Neoadjuvant therapy in pancreatic cancer: an emerging strategy. Gastroenterol Res Pract 2014:183852

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362(17):1605–1617

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Q, Rashid A, Gong Y, et al. (2012) Pathologic complete response to neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma is associated with better prognosis. Ann Diagn Pathol. 16(1). [Cited 2016 Jan 17]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832988/. Accessed 10 Oct 2017

  12. Katz MHG, Fleming JB, Bhosale P, et al. (2012) Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer 118(23):5749–5756

    Article  PubMed  Google Scholar 

  13. Ferrone CR, Marchegiani G, Hong TS, et al. (2015) Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann Surg 261(1):12–17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Valls C, Andía E, Sanchez A, et al. (2002) Dual-phase helical CT of pancreatic adenocarcinoma: assessment of resectability before surgery. Am J Roentgenol 178(4):821–826

    Article  Google Scholar 

  15. Wong JC, Raman S (2010) Surgical resectability of pancreatic adenocarcinoma: CTA. Abdom Imaging 35(4):471–480

    Article  PubMed  Google Scholar 

  16. Brennan DDD, Zamboni GA, Raptopoulos VD, Kruskal JB (2007) Comprehensive preoperative assessment of pancreatic adenocarcinoma with 64-section volumetric CT. Radiogr Rev Publ Radiol Soc N Am Inc 27(6):1653–1666

    Google Scholar 

  17. Evans DB, Varadhachary GR, Crane CH, et al. (2008) Preoperative gemcitabine-based chemoradiation for patients with resectable adenocarcinoma of the pancreatic head. J Clin Oncol Off J Am Soc Clin Oncol 26(21):3496–3502

    Article  CAS  Google Scholar 

  18. Gillen S, Schuster T, Meyer Zum Büschenfelde C, Friess H, Kleeff J (2010) Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med 7(4):e1000267

    Article  PubMed  PubMed Central  Google Scholar 

  19. Varadhachary GR, Wolff RA, Crane CH, et al. (2008) Preoperative gemcitabine and cisplatin followed by gemcitabine-based chemoradiation for resectable adenocarcinoma of the pancreatic head. J Clin Oncol Off J Am Soc Clin Oncol 26(21):3487–3495

    Article  CAS  Google Scholar 

  20. Heinrich S, Pestalozzi BC, Schäfer M, et al. (2008) Prospective phase II trial of neoadjuvant chemotherapy with gemcitabine and cisplatin for resectable adenocarcinoma of the pancreatic head. J Clin Oncol Off J Am Soc Clin Oncol 26(15):2526–2531

    Article  CAS  Google Scholar 

  21. Palmer DH, Stocken DD, Hewitt H, et al. (2007) A randomized phase 2 trial of neoadjuvant chemotherapy in resectable pancreatic cancer: gemcitabine alone versus gemcitabine combined with cisplatin. Ann Surg Oncol 14(7):2088–2096

    Article  PubMed  Google Scholar 

  22. Le Scodan R, Mornex F, Girard N, et al. (2009) Preoperative chemoradiation in potentially resectable pancreatic adenocarcinoma: feasibility, treatment effect evaluation and prognostic factors, analysis of the SFRO-FFCD 9704 trial and literature review. Ann Oncol Off J Eur Soc Med Oncol 20(8):1387–1396

    Article  Google Scholar 

  23. Chatterjee D, Katz MH, Rashid A, et al. (2012) Perineural and intraneural invasion in posttherapy pancreaticoduodenectomy specimens predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. Am J Surg Pathol 36(3):409–417

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chatterjee D, Rashid A, Wang H, et al. (2012) Tumor invasion of muscular vessels predicts poor prognosis in patients with pancreatic ductal adenocarcinoma who have received neoadjuvant therapy and pancreaticoduodenectomy. Am J Surg Pathol 36(4):552–559

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wolfgang CL, Herman JM, Laheru DA, et al. (2013) Recent progress in pancreatic cancer. CA 63(5):318–348

    PubMed  PubMed Central  Google Scholar 

  26. Tempero MA, Arnoletti JP, Behrman SW, et al. (2012) Pancreatic adenocarcinoma, version 2.2012: featured updates to the NCCN guidelines. J Natl Compr Cancer Netw 10(6):703–713

    Article  CAS  Google Scholar 

  27. Laurence JM, Tran PD, Morarji K, et al. (2011) A systematic review and meta-analysis of survival and surgical outcomes following neoadjuvant chemoradiotherapy for pancreatic cancer. J Gastrointest Surg Off J Soc Surg Aliment Tract. 15(11):2059–2069

    Article  Google Scholar 

  28. Crane CH, Varadhachary GR, Yordy JS, et al. (2011) Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: correlation of Smad4(Dpc4) immunostaining with pattern of disease progression. J Clin Oncol Off J Am Soc Clin Oncol. 29(22):3037–3043

    Article  CAS  Google Scholar 

  29. De Jesus-Acosta A, Oliver GR, Blackford A, et al. (2012) A multicenter analysis of GTX chemotherapy in patients with locally advanced and metastatic pancreatic adenocarcinoma. Cancer Chemother Pharmacol. 69(2):415–424

    Article  PubMed  Google Scholar 

  30. Herman JM, Swartz MJ, Hsu CC, et al. (2008) Analysis of fluorouracil-based adjuvant chemotherapy and radiation after pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas: results of a large, prospectively collected database at the Johns Hopkins Hospital. J Clin Oncol Off J Am Soc Clin Oncol. 26(21):3503–3510

    Article  Google Scholar 

  31. Von Hoff DD, Ramanathan RK, Borad MJ, et al. (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol Off J Am Soc Clin Oncol. 29(34):4548–4554

    Article  Google Scholar 

  32. Conroy T, Desseigne F, Ychou M, et al. (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 364(19):1817–1825

    Article  CAS  PubMed  Google Scholar 

  33. Kunzmann V, Ramanathan RK, Goldstein D, et al. (2017) Tumor reduction in primary and metastatic pancreatic cancer lesions with nab-paclitaxel and gemcitabine. Pancreas. 46(2):203–208

    Article  CAS  PubMed  Google Scholar 

  34. Galizia MS, Töre HG, Chalian H, Yaghmai V (2011) Evaluation of hepatocellular carcinoma size using two-dimensional and volumetric analysis: effect on liver transplantation eligibility. Acad Radiol. 18(12):1555–1560

    Article  PubMed  Google Scholar 

  35. Hartman DJ, Krasinskas AM (2012) Assessing treatment effect in pancreatic cancer. Arch Pathol Lab Med. 136(1):100–109

    Article  PubMed  Google Scholar 

  36. Xia BT, Fu B, Wang J, et al. (2017) Does radiologic response correlate to pathologic response in patients undergoing neoadjuvant therapy for borderline resectable pancreatic malignancy? J Surg Oncol. 115(4):376–383

    Article  CAS  PubMed  Google Scholar 

  37. He J, Page AJ, Weiss M, et al. (2014) Management of borderline and locally advanced pancreatic cancer: where do we stand? World J Gastroenterol. 20(9):2255–2266

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cassinotto C, Mouries A, Lafourcade J-P, et al. (2014) Locally advanced pancreatic adenocarcinoma: reassessment of response with CT after neoadjuvant chemotherapy and radiation therapy. Radiology. 273(1):108–116

    Article  PubMed  Google Scholar 

  39. Dudeja V, Greeno EW, Walker SP, Jensen EH (2013) Neoadjuvant chemoradiotherapy for locally advanced pancreas cancer rarely leads to radiological evidence of tumour regression. HPB. 15(9):661–667

    Article  PubMed  Google Scholar 

  40. Parakh A, Patino M, Sahani DV (2017) Spectral CT/dual-energy CT. In: SpringerLink, p. 1–21. Springer, Berlin. [Cited 2017 Nov 27]. (Medical Radiology). https://link.springer.com/chapter/10.1007/174_2017_28. Accessed 10 Oct 2017

  41. Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. Am J Roentgenol. 199(5 Suppl):S9–S15

    Article  Google Scholar 

  42. Choi H (2008) Response evaluation of gastrointestinal stromal tumors. Oncologist 13(Suppl 2):4–7

    Article  PubMed  Google Scholar 

  43. Tian F, Hayano K, Kambadakone AR, Sahani DV (2015) Response assessment to neoadjuvant therapy in soft tissue sarcomas: using CT texture analysis in comparison to tumor size, density, and perfusion. Abdom Imaging 40(6):1705–1712

    Article  PubMed  Google Scholar 

  44. Kambadakone A, Yoon SS, Kim T-M, et al. (2015) CT perfusion as an imaging biomarker in monitoring response to neoadjuvant bevacizumab and radiation in soft-tissue sarcomas: comparison with tumor morphology, circulating and tumor biomarkers, and gene expression. Am J Roentgenol. 204(1):W11–W18

    Article  Google Scholar 

  45. Morgan DE (2014) Dual-energy CT of the abdomen. Abdom Imaging. 39(1):108–134

    Article  PubMed  Google Scholar 

  46. De Cecco CN, Darnell A, Rengo M, et al. (2012) Dual-energy CT: oncologic applications. Am J Roentgenol. 199(5 Suppl):S98–S105

    Article  Google Scholar 

  47. Chu AJ, Lee JM, Lee YJ, et al. (2012) Dual-source, dual-energy multidetector CT for the evaluation of pancreatic tumours. Br J Radiol. 85(1018):e891–e898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE (2013) Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol. 68(2):148–154

    Article  CAS  PubMed  Google Scholar 

  49. Macari M, Spieler B, Kim D, et al. (2010) Dual-source dual-energy MDCT of pancreatic adenocarcinoma: initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. Am J Roentgenol. 194(1):W27–W32

    Article  Google Scholar 

  50. Stiller W, Skornitzke S, Fritz F, et al. (2015) Correlation of quantitative dual-energy computed tomography iodine maps and abdominal computed tomography perfusion measurements: are single-acquisition dual-energy computed tomography iodine maps more than a reduced-dose surrogate of conventional computed tomography perfusion? Invest Radiol. 50(10):703–708

    Article  PubMed  Google Scholar 

  51. Baxa J, Matouskova T, Krakorova G, et al. (2015) Dual-phase dual-energy CT in patients treated with Erlotinib for advanced non-small cell lung cancer: possible benefits of iodine quantification in response assessment. Eur Radiol.

  52. Baxa J, Vondráková A, Matoušková T, et al. (2014) Dual-phase dual-energy CT in patients with lung cancer: assessment of the additional value of iodine quantification in lymph node therapy response. Eur Radiol. 24(8):1981–1988

    Article  PubMed  Google Scholar 

  53. Li Y, Shi G, Wang S, Wang S, Wu R (2013) Iodine quantification with dual-energy CT: phantom study and preliminary experience with VX2 residual tumour in rabbits after radiofrequency ablation. Br J Radiol. 86(1029):20130143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Phillips P (2012) Pancreatic stellate cells and fibrosis. In: Grippo PJ, Munshi HG (eds) Pancreatic cancer and tumor microenvironment. Transworld Research Network, Trivandrum. [Cited 2016 Jan 12]. http://www.ncbi.nlm.nih.gov/books/NBK98937/. Accessed 10 Oct 2017

  55. Ganeshan B, Goh V, Mandeville HC, et al. (2013) Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 266(1):326–336

    Article  PubMed  Google Scholar 

  56. Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K (2012) Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol. 67(2):157–164

    Article  CAS  PubMed  Google Scholar 

  57. Goh V, Ganeshan B, Nathan P, et al. (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 261(1):165–171

    Article  PubMed  Google Scholar 

  58. Chen X, Oshima K, Schott D, et al. (2017) Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: an exploratory study. PloS One. 12(6):e0178961

    Article  PubMed  PubMed Central  Google Scholar 

  59. Niwa T, Ueno M, Ohkawa S, et al. (2009) Advanced pancreatic cancer: the use of the apparent diffusion coefficient to predict response to chemotherapy. Br J Radiol. 82(973):28–34

    Article  CAS  PubMed  Google Scholar 

  60. Cuneo KC, Chenevert TL, Ben-Josef E, et al. (2014) A pilot study of diffusion-weighted MRI in patients undergoing neoadjuvant chemoradiation for pancreatic cancer. Transl Oncol. 7(5):644–649

    Article  PubMed  PubMed Central  Google Scholar 

  61. Granata V, Fusco R, Setola SV, et al. (2017) Early radiological assessment of locally advanced pancreatic cancer treated with electrochemotherapy. World J Gastroenterol. 23(26):4767–4778

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shenoy-Bhangle A, Baliyan V, Kordbacheh H, Guimaraes AR, Kambadakone A (2017) Diffusion weighted magnetic resonance imaging of liver: principles, clinical applications and recent updates. World J Hepatol. 9(26):1081–1091

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bang S, Chung HW, Park SW, et al. (2006) The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol. 40(10):923–929

    Article  PubMed  Google Scholar 

  64. Kittaka H, Takahashi H, Ohigashi H, et al. (2013) Role of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in predicting the pathologic response to preoperative chemoradiation therapy in patients with resectable T3 pancreatic cancer. World J Surg. 37(1):169–178

    Article  PubMed  Google Scholar 

  65. Bjerregaard JK, Fischer BM, Vilstrup MH, et al. (2011) Feasibility of FDG-PET/CT imaging during concurrent chemo-radiotherapy in patients with locally advanced pancreatic cancer. Acta Oncol Stockh Swed. 50(8):1250–1252

    Article  Google Scholar 

  66. Patel M, Hoffe S, Malafa M, et al. (2011) Neoadjuvant GTX chemotherapy and IMRT-based chemoradiation for borderline resectable pancreatic cancer. J Surg Oncol. 104(2):155–161

    Article  PubMed  PubMed Central  Google Scholar 

  67. Choi M, Heilbrun LK, Venkatramanamoorthy R, et al. (2010) Using 18F-fluorodeoxyglucose positron emission tomography to monitor clinical outcomes in patients treated with neoadjuvant chemo-radiotherapy for locally advanced pancreatic cancer. Am J Clin Oncol. 33(3):257–261

    PubMed  Google Scholar 

  68. van Kouwen MCA, Laverman P, van Krieken JH, et al. (2005) FDG-PET in the detection of early pancreatic cancer in a BOP hamster model. Nucl Med Biol. 32(5):445–450

    Article  PubMed  Google Scholar 

  69. Fendrich V, Schneider R, Maitra A, et al. (2011) Detection of precursor lesions of pancreatic adenocarcinoma in PET-CT in a genetically engineered mouse model of pancreatic cancer. Neoplasia 13(2):180–186

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ramanathan RK, Goldstein D, Korn RL, et al. (2016) Positron emission tomography response evaluation from a randomized phase III trial of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone for patients with metastatic adenocarcinoma of the pancreas. Ann Oncol Off J Eur Soc Med Oncol. 27(4):648–653

    Article  CAS  Google Scholar 

  71. Toesca DAS, Pollom EL, Poullos PD, et al. (2017) Assessing local progression after stereotactic body radiation therapy for unresectable pancreatic adenocarcinoma: CT versus PET. Pract Radiat Oncol. 7(2):120–125

    Article  PubMed  Google Scholar 

  72. Heinrich S, Schäfer M, Weber A, et al. (2008) Neoadjuvant chemotherapy generates a significant tumor response in resectable pancreatic cancer without increasing morbidity: results of a prospective phase II trial. Ann Surg. 248(6):1014–1022

    Article  PubMed  Google Scholar 

  73. Chang BK, Timmerman RD (2007) Stereotactic body radiation therapy: a comprehensive review. Am J Clin Oncol. 30(6):637–644

    Article  PubMed  Google Scholar 

  74. Choi HJ, Lee JW, Kang B, et al. (2014) Prognostic significance of volume-based FDG PET/CT parameters in patients with locally advanced pancreatic cancer treated with chemoradiation therapy. Yonsei Med J. 55(6):1498–1506

    Article  PubMed  PubMed Central  Google Scholar 

  75. Davalos RV, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng. 33(2):223–231

    Article  CAS  PubMed  Google Scholar 

  76. Martin RCG (2015) Use of irreversible electroporation in unresectable pancreatic cancer. Hepatobiliary Surg Nutr. 4(3):211–215

    PubMed  PubMed Central  Google Scholar 

  77. Martin RCG (2015) Irreversible electroporation of locally advanced pancreatic neck/body adenocarcinoma. J Gastrointest Oncol. 6(3):329–335

    PubMed  PubMed Central  Google Scholar 

  78. Martin RCG, Kwon D, Chalikonda S, et al. (2015) Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy. Ann Surg. 262(3):486–494 ((discussion 492–494))

    Article  PubMed  Google Scholar 

  79. Martin RCG, McFarland K, Ellis S, Velanovich V (2012) Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J Am Coll Surg. 215(3):361–369

    Article  PubMed  Google Scholar 

  80. Martin RCG, McFarland K, Ellis S, Velanovich V (2013) Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival. Ann Surg Oncol. 20(S3):443–449

    Article  Google Scholar 

  81. Scheffer HJ, Nielsen K, de Jong MC, et al. (2014) Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J Vasc Interv Radiol. 25(7):997–1011 ((quiz 1011))

    Article  PubMed  Google Scholar 

  82. Ansari D, Kristoffersson S, Andersson R, Bergenfeldt M (2017) The role of irreversible electroporation (IRE) for locally advanced pancreatic cancer: a systematic review of safety and efficacy. Scand J Gastroenterol. 52(11):1165–1171

    Article  PubMed  Google Scholar 

  83. Jaroszeski MJ, Dang V, Pottinger C, et al. (2000) Toxicity of anticancer agents mediated by electroporation in vitro. Anticancer Drugs. 11(3):201–208

    Article  CAS  PubMed  Google Scholar 

  84. Akinwande O, Ahmad SS, Van Meter T, Schulz B, Martin RCG (2015) CT findings of patients treated with irreversible electroporation for locally advanced pancreatic cancer. J Oncol. 2015:680319

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vroomen LGPH, Scheffer HJ, Melenhorst MCAM, et al. (2017) MR and CT imaging characteristics and ablation zone volumetry of locally advanced pancreatic cancer treated with irreversible electroporation. Eur Radiol. 27(6):2521–2531

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kambadakone.

Ethics declarations

Funding

There is no source of funding for this project/review article.

Conflict of interest

Vinit Baliyan, MD declares he has no conflict of interest. Hamed Kordbacheh, MD declares he has no conflict of interest. Anushri Parakh, MD declares she has no conflict of interest. Avinash Kambadakone, MD FRCR declares Consultant, Bayer.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baliyan, V., Kordbacheh, H., Parakh, A. et al. Response assessment in pancreatic ductal adenocarcinoma: role of imaging. Abdom Radiol 43, 435–444 (2018). https://doi.org/10.1007/s00261-017-1434-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1434-7

Keywords

Navigation