Skip to main content
Log in

An overview of PET/MR, focused on clinical applications

  • Pictorial Essay
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Hybrid PET/MR scanners are innovative imaging devices that simultaneously or sequentially acquire and fuse anatomical and functional data from magnetic resonance (MR) with metabolic information from positron emission tomography (PET) (Delso et al. in J Nucl Med 52:1914–1922, 2011; Zaidi et al. in Phys Med Biol 56:3091–3106, 2011). Hybrid PET/MR scanners have the potential to greatly impact not only on medical research but also, and more importantly, on patient management. Although their clinical applications are still under investigation, the increased worldwide availability of PET/MR scanners, and the growing published literature are important determinants in their rising utilization for primarily clinical applications. In this manuscript, we provide a summary of the physical features of PET/MR, including its limitations, which are most relevant to clinical PET/MR implementation and to interpretation. Thereafter, we discuss the most important current and emergent clinical applications of such hybrid technology in the abdomen and pelvis, both in the field of oncologic and non-oncologic imaging, and we provide, when possible, a comparison with clinically consolidated imaging techniques, like for example PET/CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Delso G, Furst S, Jakoby B, et al. (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1914–1922

    Article  PubMed  Google Scholar 

  2. Zaidi H, Ojha N, Morich M, et al. (2011) Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 56:3091–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Torigian DA, Zaidi H, Kwee TC, et al. (2013) PET/MR imaging: technical aspects and potential clinical applications. Radiology 267:26–44

    Article  PubMed  Google Scholar 

  4. Catana C, Guimaraes AR, Rosen BR (2013) PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med 54:815–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hofmann M, Bezrukov I, Mantlik F, et al. (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52:1392–1399

    Article  PubMed  Google Scholar 

  6. Dickson JC, O’Meara C, Barnes A (2014) A comparison of CT- and MR-based attenuation correction in neurological PET. Eur J Nucl Med Mol Imaging 41:1176–1189

    Article  PubMed  Google Scholar 

  7. Catana C, Drzezga A, Heiss WD, Rosen BR (2012) PET/MRI for neurologic applications. J Nucl Med 53:1916–1925

    Article  PubMed  Google Scholar 

  8. Catana C (2015) Motion correction options in PET/MRI. Semin Nucl Med 45:212–223

    Article  PubMed  PubMed Central  Google Scholar 

  9. Antoch G, Stattaus J, Nemat AT, et al. (2003) Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 229:526–533

    Article  PubMed  Google Scholar 

  10. Lardinois D, Weder W, Hany TF, et al. (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348:2500–2507

    Article  PubMed  Google Scholar 

  11. Boss DS, Olmos RV, Sinaasappel M, Beijnen JH, Schellens JH (2008) Application of PET/CT in the development of novel anticancer drugs. Oncologist 13:25–38

    Article  CAS  PubMed  Google Scholar 

  12. Al-Sugair A, Coleman RE (1998) Applications of PET in lung cancer. Semin Nucl Med 28:303–319

    Article  CAS  PubMed  Google Scholar 

  13. Jerusalem G, Beguin Y, Najjar F, et al. (2001) Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) for the staging of low-grade non-Hodgkin’s lymphoma (NHL). Ann Oncol 12:825–830

    Article  CAS  PubMed  Google Scholar 

  14. Kayani I, Bomanji JB, Groves A, et al. (2008) Functional imaging of neuroendocrine tumors with combined PET/CT using 68 Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer 112:2447–2455

    Article  PubMed  Google Scholar 

  15. Park JW, Kim JH, Kim SK, et al. (2008) A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med 49:1912–1921

    Article  PubMed  Google Scholar 

  16. Son H, Khan SM, Rahaman J, et al. (2011) Role of FDG PET/CT in staging of recurrent ovarian cancer. Radiographics 31:569–583

    Article  PubMed  Google Scholar 

  17. Mueller-Lisse UG, Mueller-Lisse UL, Meindl T, et al. (2007) Staging of renal cell carcinoma. Eur Radiol 17:2268–2277

    Article  PubMed  Google Scholar 

  18. Ozawa Y, Hara M, Sakurai K, et al. (2010) Diagnostic accuracy of (18)F-2-deoxy-fluoro-d-glucose positron emission tomography for pN2 lymph nodes in patients with lung cancer. Acta Radiol 51:150–155

    Article  PubMed  Google Scholar 

  19. Sharma P, Kumar R, Singh H, et al. (2012) Carcinoma endometrium: role of 18-FDG PET/CT for detection of suspected recurrence. Clin Nucl Med 37:649–655

    Article  PubMed  Google Scholar 

  20. von Schulthess GK, Schlemmer HP (2009) A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 36(Suppl 1):S3–S9

    Article  Google Scholar 

  21. Nasu K, Kuroki Y, Nawano S, et al. (2006) Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 239:122–130

    Article  PubMed  Google Scholar 

  22. Padhani AR, Koh DM, Collins DJ (2011) Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 261:700–718

    Article  PubMed  Google Scholar 

  23. Brown G, Richards CJ, Bourne MW, et al. (2003) Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. Radiology 227:371–377

    Article  PubMed  Google Scholar 

  24. Bruegel M, Holzapfel K, Gaa J, et al. (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485

    Article  PubMed  Google Scholar 

  25. Eiber M, Beer AJ, Holzapfel K, et al. (2010) Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol 45:15–23

    Article  PubMed  Google Scholar 

  26. Fornasa F, Nesoti MV, Bovo C, Bonavina MG (2012) Diffusion-weighted magnetic resonance imaging in the characterization of axillary lymph nodes in patients with breast cancer. J Magn Reson Imaging 36:858–864

    Article  PubMed  Google Scholar 

  27. De Iaco P, Musto A, Orazi L, et al. (2011) FDG-PET/CT in advanced ovarian cancer staging: value and pitfalls in detecting lesions in different abdominal and pelvic quadrants compared with laparoscopy. Eur J Radiol 80:e98–e103

    Article  PubMed  Google Scholar 

  28. Soussan M, Des Guetz G, Barrau V, et al. (2012) Comparison of FDG-PET/CT and MR with diffusion-weighted imaging for assessing peritoneal carcinomatosis from gastrointestinal malignancy. Eur Radiol 22:1479–1487

    Article  PubMed  Google Scholar 

  29. De Gaetano AM, Calcagni ML, Rufini V, et al. (2009) Imaging of peritoneal carcinomatosis with FDG PET-CT: diagnostic patterns, case examples and pitfalls. Abdom Imaging 34:391–402

    Article  PubMed  Google Scholar 

  30. Eisenhauer EA, Therasse P, Bogaerts J, et al. (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  31. Kirchner J, Kirchner EM, Goltz JP, Lorenz VW, Kickuth R (2011) Prevalence of enlarged mediastinal lymph nodes in heavy smokers–a comparative study. Eur Radiol 21:1594–1599

    Article  PubMed  Google Scholar 

  32. Atkinson W, Catana C, Abramson JS, et al. (2016) Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients. Abdom Radiol 41:1338–1348

    Article  Google Scholar 

  33. Heacock L, Weissbrot J, Raad R, et al. (2015) PET/MRI for the evaluation of patients with lymphoma: initial observations. Am J Roentgenol 204:842–848

    Article  Google Scholar 

  34. Ponisio MR, McConathy J, Laforest R, Khanna G (2016) Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatric Radiol 46:1258–1268

    Article  Google Scholar 

  35. Park JM, Kim IY, Kim SW, et al. (2013) A comparative study of FDG PET/CT and enhanced multi-detector CT for detecting liver metastasis according to the size and location. Ann Nucl Med 27:217–224

    Article  PubMed  Google Scholar 

  36. Holalkere NS, Sahani DV, Blake MA, et al. (2006) Characterization of small liver lesions: Added role of MR after MDCT. J Comput Assist Tomogr 30:591–596

    Article  PubMed  Google Scholar 

  37. Barker DW, Zagoria RJ, Morton KA, Kavanagh PV, Shen P (2005) Evaluation of liver metastases after radiofrequency ablation: utility of 18F-FDG PET and PET/CT. Am J Roentgenol 184:1096–1102

    Article  Google Scholar 

  38. Kamholtz R, Sze G (1991) Current imaging in spinal metastatic disease. Semin Oncol 18:158–169

    CAS  PubMed  Google Scholar 

  39. Nakai T, Okuyama C, Kubota T, et al. (2005) Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 32:1253–1258

    Article  PubMed  Google Scholar 

  40. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22:2942–2953

    Article  PubMed  Google Scholar 

  41. Sugawara Y, Fisher SJ, Zasadny KR, et al. (1998) Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 16:173–180

    Article  CAS  PubMed  Google Scholar 

  42. Even-Sapir E, Metser U, Flusser G, et al. (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  43. Damle NA, Bal C, Bandopadhyaya GP, et al. (2013) The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99 mTc-MDP bone scan. Jpn J Radiol 31:262–269

    Article  PubMed  Google Scholar 

  44. Schmidt GP, Reiser MF, Baur-Melnyk A (2007) Whole-body imaging of the musculoskeletal system: the value of MR imaging. Skeletal Radiol 36:1109–1119

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lecouvet FE, El Mouedden J, Collette L, et al. (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62:68–75

    Article  PubMed  Google Scholar 

  46. Ferraro R, Agarwal A, Martin-Macintosh EL, Peller PJ, Subramaniam RM (2015) MR imaging and PET/CT in diagnosis and management of multiple myeloma. Radiographics 35:438–454

    Article  PubMed  Google Scholar 

  47. Moulopoulos LA, Dimopoulos MA, Alexanian R, Leeds NE, Libshitz HI (1994) Multiple myeloma: MR patterns of response to treatment. Radiology 193:441–446

    Article  CAS  PubMed  Google Scholar 

  48. Agarwal A, Chirindel A, Shah BA, Subramaniam RM (2013) Evolving role of FDG PET/CT in multiple myeloma imaging and management. Am J Roentgenol 200:884–890

    Article  Google Scholar 

  49. Schoder H, Larson SM (2004) Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 34:274–292

    Article  PubMed  Google Scholar 

  50. Kim DJ, Kim JH, Ryu YH, et al. (2011) Nodal staging of rectal cancer: high-resolution pelvic MRI versus (1)(8)F-FDGPET/CT. J Comput Assist Tomogr 35:531–534

    Article  PubMed  Google Scholar 

  51. Kim SH, Choi BI, Han JK, et al. (1993) Preoperative staging of uterine cervical carcinoma: comparison of CT and MRI in 99 patients. J Comput Assist Tomogr 17:633–640

    Article  CAS  PubMed  Google Scholar 

  52. Kim DJ, Kim JH, Lim JS, et al. (2010) Restaging of rectal cancer with MR imaging after concurrent chemotherapy and radiation therapy. Radiographics 30:503–516

    Article  PubMed  Google Scholar 

  53. Stolzmann P, Veit-Haibach P, Chuck N, et al. (2013) Detection rate, location, and size of pulmonary nodules in trimodality PET/CT-MR: comparison of low-dose CT and Dixon-based MR imaging. Invest Radiol 48:241–246

    Article  PubMed  Google Scholar 

  54. Catalano OA, Rosen BR, Sahani DV, et al. (2013) Clinical impact of PET/mr imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients—a hypothesis-generating exploratory study. Radiology 269(3):857–8692013

    Article  PubMed  Google Scholar 

  55. Hirsch FW, Sattler B, Sorge I, et al. (2013) PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 43:860–875

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schafer JF, Gatidis S, Schmidt H, et al. (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273:220–231

    Article  PubMed  Google Scholar 

  57. Pugmire BS, Guimaraes AR, Lim R, et al. (2016) Simultaneous whole body (18)F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: preliminary experience and comparison with (18)F-fluorodeoxyglucose positron emission tomography computed tomography. World J Radiol 8:322–330

    Article  PubMed  PubMed Central  Google Scholar 

  58. Miglioretti DL, Johnson E, Williams A, et al. (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shinagare AB, Sahni VA, Sadow CA, Erturk SM, Silverman SG (2011) Feasibility of low-tube-voltage excretory phase images during CT urography: assessment using a dual-energy CT scanner. Am J Roentgenol 197:1146–1151

    Article  Google Scholar 

  60. Catalano OA, Gee MS, Nicolai E, et al. (2016) Evaluation of quantitative PET/MR enterography biomarkers for discrimination of inflammatory strictures from fibrotic strictures in crohn disease. Radiology 278:792–800

    Article  PubMed  Google Scholar 

  61. Pellino G, Nicolai E, Catalano OA, et al. (2016) PET/MR versus PET/CT imaging: impact on the clinical management of small-bowel Crohn’s disease. J Crohns Colitis 10:277–285

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onofrio Antonio Catalano.

Ethics declarations

Conflict of interest

No author declares any conflict of interest.

Ethical approval

This article, being a review manuscript, does not contain any studies with human participants performed by any of the authors. All these studies had been granted approval by the Ethical Commission. No new patients have been enrolled neither new research studies have been performed to be used for the submitted review paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalano, O.A., Masch, W.R., Catana, C. et al. An overview of PET/MR, focused on clinical applications. Abdom Radiol 42, 631–644 (2017). https://doi.org/10.1007/s00261-016-0894-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0894-5

Keywords

Navigation