Skip to main content
Log in

Functional MR imaging as a new paradigm for image guidance

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Guidance and monitoring of locoregional minimally invasive treatment for primary or secondary liver tumor are critical to ensuring success and efficacy of therapy. In this article, we review advanced MR imaging techniques, including MR spectroscopy, diffusion and perfusion MR imaging, which can provide essential in vivo physiologic and metabolic information. These innovative imaging techniques can provide potential additional criteria to assess tumor response in addition to the accepted yet often limited Response Evaluation Criteria in Solid Tumors (RECIST) and the European Association for the Study of the Liver (EASL) criteria, which are based on decrease of tumor size and lesion enhancement, respectively. In this article, we also discuss the role of tumor size and enhancement in addition to apparent diffusion coefficient (ADC) findings after radiofrequency ablation (RFA), transarterial chemoembolization (TACE), and radioembolization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Law M, Hamburger M, Johnson G, et al. (2004) Differentiating surgical from non-surgical lesions using perfusion MR imaging and proton MR spectroscopic imaging. Technol Cancer Res Treat 3:557–565

    PubMed  Google Scholar 

  2. Kos S, Huegli R, Bongartz GM, Jacob AL, Bilecen D (2008) MR-guided endovascular interventions: a comprehensive review on techniques and applications. Eur Radiol 18:645–657

    Article  PubMed  Google Scholar 

  3. Rhee TK, Larson AC, Prasad PV, et al. (2005) Feasibility of blood oxygenation level-dependent MR imaging to monitor hepatic transcatheter arterial embolization in rabbits. J Vasc Interv Radiol 16:1523–1528

    PubMed  Google Scholar 

  4. Vossen JA, Buijs M, Kamel IR (2006) Assessment of tumor response on MR imaging after locoregional therapy. Tech Vasc Interv Radiol 9:125–132

    Article  PubMed  Google Scholar 

  5. Dodd GD 3rd, Soulen MC, Kane RA, et al. (2000) Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough. Radiographics 20:9–27

    PubMed  Google Scholar 

  6. Goldberg SN, Ahmed M (2002) Minimally invasive image-guided therapies for hepatocellular carcinoma. J Clin Gastroenterol 35:S115–S129

    Article  PubMed  CAS  Google Scholar 

  7. Bartolozzi C, Lencioni R, Caramella D, et al. (1994) Hepatocellular carcinoma: CT and MR features after transcatheter arterial embolization and percutaneous ethanol injection. Radiology 191:123–128

    PubMed  CAS  Google Scholar 

  8. Lencioni R, Caramella D, Bartolozzi C (1995) Hepatocellular carcinoma: use of color Doppler US to evaluate response to treatment with percutaneous ethanol injection. Radiology 194:113–118

    PubMed  CAS  Google Scholar 

  9. Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47:207–214

    Article  PubMed  CAS  Google Scholar 

  10. Therasse P, Arbuck SG, Eisenhauer EA, et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  11. Kamel IR, Bluemke DA (2002) Magnetic resonance imaging of the liver: assessing response to treatment. Top Magn Reson Imaging 13:191–200

    Article  PubMed  Google Scholar 

  12. Bruix J, Sherman M, Llovet JM, et al. (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 35:421–430

    Article  PubMed  CAS  Google Scholar 

  13. Padhani AR, Leach MO (2005) Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging. Abdom Imaging 30:324–341

    Article  PubMed  CAS  Google Scholar 

  14. Goh V, Padhani AR (2006) Imaging tumor angiogenesis: functional assessment using MDCT or MRI? Abdom Imaging 31:194–199

    Article  PubMed  CAS  Google Scholar 

  15. Kim YK, Kwak HS, Kim CS, et al. (2006) Hepatocellular carcinoma in patients with chronic liver disease: comparison of SPIO-enhanced MR imaging and 16-detector row CT. Radiology 238:531–541

    Article  PubMed  Google Scholar 

  16. Lankester KJ, Taylor JN, Stirling JJ, et al. (2007) Dynamic MRI for imaging tumor microvasculature: comparison of susceptibility and relaxivity techniques in pelvic tumors. J Magn Reson Imaging 25:796–805

    Article  PubMed  Google Scholar 

  17. Miyazaki K, Collins DJ, Walker-Samuel S, et al. (2008) Quantitative mapping of hepatic perfusion index using MR imaging: a potential reproducible tool for assessing tumour response to treatment with the antiangiogenic compound BIBF 1120, a potent triple angiokinase inhibitor. Eur Radiol 18:1414–1421

    Article  PubMed  Google Scholar 

  18. Leach MO, Brindle KM, Evelhoch JL, et al. (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Brit J Cancer 92:1599–1610

    Article  PubMed  CAS  Google Scholar 

  19. Leveson SH, Wiggins PA, Giles GR, Parkin A, Robinson PJ (1985) Deranged liver blood flow patterns in the detection of liver metastases. Brit J Surg 72:128–130

    Article  PubMed  CAS  Google Scholar 

  20. Law M, Yang S, Wang H, et al. (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Ajnr 24:1989–1998

    PubMed  Google Scholar 

  21. Yeung DK, Cheung HS, Tse GM (2001) Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy–initial results. Radiology 220:40–46

    PubMed  CAS  Google Scholar 

  22. Jagannathan NR, Kumar M, Seenu V, et al. (2001) Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Brit J Cancer 84:1016–1022

    Article  PubMed  CAS  Google Scholar 

  23. Wu B, Peng WJ, Wang PJ, et al. (2006) In vivo 1H magnetic resonance spectroscopy in evaluation of hepatocellular carcinoma and its early response to transcatheter arterial chemoembolization. Chinese Med Sci J = Chung-kuo i hsueh k’o hsueh tsa chih/Chinese Acad Med Sci 21:258–264

    Google Scholar 

  24. Bertram HC, Duarte IF, Gil AM, Knudsen KE, Laerke HN (2007) Metabolic profiling of liver from hypercholesterolemic pigs fed rye or wheat fiber and from normal pigs. High-resolution magic angle spinning 1H NMR spectroscopic study. Anal Chem 79:168–175

    Article  PubMed  CAS  Google Scholar 

  25. Duarte IF, Stanley EG, Holmes E, et al. (2005) Metabolic assessment of human liver transplants from biopsy samples at the donor and recipient stages using high-resolution magic angle spinning 1H NMR spectroscopy. Anal Chem 77:5570–5578

    Article  PubMed  CAS  Google Scholar 

  26. Longo R, Ricci C, Masutti F, et al. (1993) Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Invest Radiol 28:297–302

    Article  PubMed  CAS  Google Scholar 

  27. Xu H, Li X, Yang ZH, Xie JX (2006) In vivo 1H MR spectroscopy in the evaluation of the serial development of hepatocarcinogenesis in an experimental rat model. Acad Radiol 13:1532–1537

    Article  PubMed  Google Scholar 

  28. Hara T, Bansal A, DeGrado TR (2006) Choline transporter as a novel target for molecular imaging of cancer. Mol Imaging 5:498–509

    PubMed  Google Scholar 

  29. Taouli B, Vilgrain V, Dumont E, et al. (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78

    Article  PubMed  Google Scholar 

  30. Moffat BA, Chenevert TL, Lawrence TS, et al. (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102:5524–5529

    Article  PubMed  CAS  Google Scholar 

  31. Moffat BA, Chenevert TL, Meyer CR, et al. (2006) The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia (New York, NY) 8:259–267

    CAS  Google Scholar 

  32. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. Ajnr 27:1776–1781

    PubMed  CAS  Google Scholar 

  33. Moseley ME, Cohen Y, Kucharczyk J, et al. (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445

    PubMed  CAS  Google Scholar 

  34. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623

    PubMed  CAS  Google Scholar 

  35. Graham SJ, Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM (1999) Analysis of changes in MR properties of tissues after heat treatment. Magn Reson Med 42:1061–1071

    Article  PubMed  CAS  Google Scholar 

  36. Kuehl H, Antoch G, Stergar H, et al. (2008) Comparison of FDG-PET, PET/CT and MRI for follow-up of colorectal liver metastases treated with radiofrequency ablation: initial results. Eur J Radiol 67:362–371

    Article  PubMed  Google Scholar 

  37. Smith S, Gillams A (2008) Imaging appearances following thermal ablation. Clin Radiol 63:1–11

    Article  PubMed  CAS  Google Scholar 

  38. Mahnken AH, Buecker A, Spuentrup E, et al. (2004) MR-guided radiofrequency ablation of hepatic malignancies at 1.5 T: initial results. J Magn Reson Imaging 19:342–348

    Article  PubMed  Google Scholar 

  39. Bartolozzi C, Crocetti L, Cioni D, Donati FM, Lencioni R (2001) Assessment of therapeutic effect of liver tumor ablation procedures0. Hepato-gastroenterol 48:352–358

    CAS  Google Scholar 

  40. Rossi S, Buscarini E, Garbagnati F, et al. (1998) Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. Ajr 170:1015–1022

    PubMed  CAS  Google Scholar 

  41. Shibata T, Iimuro Y, Yamamoto Y, et al. (2002) Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy. Radiology 223:331–337

    Article  PubMed  Google Scholar 

  42. Chopra S, Dodd GD 3rd, Chintapalli KN, et al. (2001) Tumor recurrence after radiofrequency thermal ablation of hepatic tumors: spectrum of findings on dual-phase contrast-enhanced CT. Ajr 177:381–387

    PubMed  CAS  Google Scholar 

  43. Sironi S, Livraghi T, Meloni F, et al. A (1999) Small hepatocellular carcinoma treated with percutaneous RF ablation: MR imaging follow-up. Ajr 173:1225–1229

    PubMed  CAS  Google Scholar 

  44. Curley SA, Izzo F, Delrio P, et al. (1999) Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann Surg 230:1–8

    Article  PubMed  CAS  Google Scholar 

  45. Kamat PP, Gupta S, Ensor JE, et al. (2008) Hepatic arterial embolization and chemoembolization in the management of patients with large-volume liver metastases. Cardiovasc Interv Radiol 31:299–307

    Article  Google Scholar 

  46. Wang D, Bangash AK, Rhee TK, et al. (2007) Liver tumors: monitoring embolization in rabbits with VX2 tumors–transcatheter intraarterial first-pass perfusion MR imaging. Radiology 245:130–139

    Article  PubMed  Google Scholar 

  47. Larson AC, Wang D, Atassi B, et al. (2008) Transcatheter intraarterial perfusion: MR monitoring of chemoembolization for hepatocellular carcinoma–feasibility of initial clinical translation. Radiology 246:964–971

    Article  PubMed  Google Scholar 

  48. Lou CY, Feng YM, Qian AR, et al. (2004) Establishment and characterization of human hepatocellular carcinoma cell line FHCC-98. World J Gastroenterol 10:1462–1465

    PubMed  Google Scholar 

  49. Kamel IR, Bluemke DA, Eng J, et al. (2006) The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 17:505–512

    PubMed  Google Scholar 

  50. Kamel IR, Bluemke DA, Ramsey D, et al. (2003) Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. Ajr 181:708–710

    PubMed  Google Scholar 

  51. Pelletier G, Roche A, Ink O, et al. (1990) A randomized trial of hepatic arterial chemoembolization in patients with unresectable hepatocellular carcinoma. J Hepatol 11:181–184

    Article  PubMed  CAS  Google Scholar 

  52. Groupe d’Etude et de Traitement du Carcinome Hepatocellulaire. (1995) A comparison of lipiodol chemoembolization, conservative treatment for unresectable hepatocellular carcinoma. New Engl J Med 332:1256–1261

    Google Scholar 

  53. Bruix J, Llovet JM, Castells A, et al. (1998) Transarterial embolization versus symptomatic treatment in patients with advanced hepatocellular carcinoma: results of a randomized, controlled trial in a single institution. Hepatology (Baltimore, MD) 27:1578–1583

    Article  CAS  Google Scholar 

  54. De Santis M, Alborino S, Tartoni PL, et al. (1997) Effects of lipiodol retention on MRI signal intensity from hepatocellular carcinoma and surrounding liver treated by chemoembolization. Eur Radiol 7:10–16

    Article  PubMed  Google Scholar 

  55. Ito K, Honjo K, Fujita T, et al. (1995) Therapeutic efficacy of transcatheter arterial chemoembolization for hepatocellular carcinoma: MRI and pathology. J Comput Assist Tomo 19:198–203

    Article  CAS  Google Scholar 

  56. Kim T, Murakami T, Takahashi S, et al. (1999) Diffusion-weighted single-shot echoplanar MR imaging for liver disease. Ajr 173:393–398

    PubMed  CAS  Google Scholar 

  57. Khan SA, Miras A, Pelling M, Taylor-Robinson SD (2007) Cholangiocarcinoma and its management. Gut 56:1755–1756

    Article  PubMed  CAS  Google Scholar 

  58. Burger I, Hong K, Schulick R, et al. (2005) Transcatheter arterial chemoembolization in unresectable cholangiocarcinoma: initial experience in a single institution. J Vasc Interv Radiol 16:353–361

    PubMed  Google Scholar 

  59. Gusani NJ, Balaa FK, Steel JL, et al. (2008) Treatment of unresectable cholangiocarcinoma with gemcitabine-based transcatheter arterial chemoembolization (TACE): a single-institution experience. J Gastrointest Surg 12:129–137

    Article  PubMed  Google Scholar 

  60. Carty NJ, Foggitt A, Hamilton CR, Royle GT, Taylor I (1995) Patterns of clinical metastasis in breast cancer: an analysis of 100 patients. Eur J Surg Oncol 21:607–608

    Article  PubMed  CAS  Google Scholar 

  61. Li XP, Meng ZQ, Guo WJ, Li J (2005) Treatment for liver metastases from breast cancer: results and prognostic factors. World J Gastroenterol 11:3782–3787

    PubMed  Google Scholar 

  62. Buijs M, Kamel IR, Vossen JA, et al. (2007) Assessment of metastatic breast cancer response to chemoembolization with contrast agent enhanced and diffusion-weighted MR imaging. J Vasc Interv Radiol 18:957–963

    Article  PubMed  Google Scholar 

  63. Touzios JG, Kiely JM, Pitt SC, et al. (2005) Neuroendocrine hepatic metastases: does aggressive management improve survival? Ann Surg 241:776–783; discussion 783–775

    Article  PubMed  Google Scholar 

  64. Norton JA (2005) Surgical treatment and prognosis of gastrinoma. Best Pract Res 19:799–805

    Article  Google Scholar 

  65. Tomassetti P, Campana D, Piscitelli L, et al. (2005) Endocrine pancreatic tumors: factors correlated with survival. Ann Oncol 16:1806–1810

    Article  PubMed  CAS  Google Scholar 

  66. Gupta S, Yao JC, Ahrar K, et al. (2003) Hepatic artery embolization and chemoembolization for treatment of patients with metastatic carcinoid tumors: the M.D. Anderson experience. Cancer J (Sudbury, Mass) 9:261–267

    Article  Google Scholar 

  67. Roche A, Girish BV, de Baere T, et al. (2003) Trans-catheter arterial chemoembolization as first-line treatment for hepatic metastases from endocrine tumors. Eur Radiol 13:136–140

    PubMed  Google Scholar 

  68. Eriksson BK, Larsson EG, Skogseid BM, et al. (1998) Liver embolizations of patients with malignant neuroendocrine gastrointestinal tumors. Cancer 83:2293–2301

    Article  PubMed  CAS  Google Scholar 

  69. Gupta S, Johnson MM, Murthy R, et al. (2005) Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors: variables affecting response rates and survival. Cancer 104:1590–1602

    Article  PubMed  Google Scholar 

  70. Liapi E, Geschwind JF, Vossen JA, et al. (2008) Functional MRI evaluation of tumor response in patients with neuroendocrine hepatic metastasis treated with transcatheter arterial chemoembolization. Ajr 190:67–73

    Article  PubMed  Google Scholar 

  71. Murthy R, Nunez R, Szklaruk J, et al. (2005) Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics 25(Suppl 1):S41–S55

    Article  PubMed  Google Scholar 

  72. Geschwind JF, Salem R, Carr BI, et al. (2004) Yttrium-90 microspheres for the treatment of hepatocellular carcinoma. Gastroenterology 127:S194–S205

    Article  PubMed  CAS  Google Scholar 

  73. Andrews JC, Walker SC, Ackermann RJ, et al. (1994) Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med 35:1637–1644

    PubMed  CAS  Google Scholar 

  74. Sarfaraz M, Kennedy AS, Cao ZJ, et al. (2003) Physical aspects of yttrium-90 microsphere therapy for nonresectable hepatic tumors. Med Phys 30:199–203

    Article  PubMed  CAS  Google Scholar 

  75. Buscombe JR, Padhy A (2001) Treatment of hepatocellular carcinoma: a pivotal role for nuclear medicine? Nucl Med Commun 22:119–120

    Article  PubMed  CAS  Google Scholar 

  76. Keppke AL, Salem R, Reddy D, et al. (2007) Imaging of hepatocellular carcinoma after treatment with yttrium-90 microspheres. Ajr 188:768–775

    Article  PubMed  Google Scholar 

  77. Miller FH, Keppke AL, Reddy D, et al. (2007) Response of liver metastases after treatment with yttrium-90 microspheres: role of size, necrosis, and PET. Ajr 188:776–783

    Article  PubMed  Google Scholar 

  78. McEntee GP, Nagorney DM, Kvols LK, Moertel CG, Grant CS (1990) Cytoreductive hepatic surgery for neuroendocrine tumors. Surgery 108:1091–1096

    PubMed  CAS  Google Scholar 

  79. Kamel IR, Reyes DK, Liapi E, Bluemke DA, Geschwind JF (2007) Functional MR imaging assessment of tumor response after 90Y microsphere treatment in patients with unresectable hepatocellular carcinoma. J Vasc Interv Radiol 18:49–56

    Article  PubMed  Google Scholar 

  80. Deng J, Miller FH, Rhee TK, et al. (2006) Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Interv Radiol 17:1195–1200

    Article  PubMed  Google Scholar 

  81. Sato KT, Lewandowski RJ, Mulcahy MF, et al. (2008) Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres–safety, efficacy, and survival. Radiology 247:507–515

    Article  PubMed  Google Scholar 

  82. Murthy R, Eng C, Krishnan S, et al. (2007) Hepatic yttrium-90 radioembolotherapy in metastatic colorectal cancer treated with cetuximab or bevacizumab. J Vasc Interv Radiol 18:1588–1591

    Article  PubMed  Google Scholar 

  83. Murthy R, Kamat P, Nunez R, et al. (2008) Yttrium-90 microsphere radioembolotherapy of hepatic metastatic neuroendocrine carcinomas after hepatic arterial embolization. J Vasc Interv Radiol 19:145–151

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihab R. Kamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assumpcao, L., Choti, M., Pawlik, T.M. et al. Functional MR imaging as a new paradigm for image guidance. Abdom Imaging 34, 675–685 (2009). https://doi.org/10.1007/s00261-008-9481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-008-9481-8

Keywords

Navigation