Skip to main content

Advertisement

Log in

Comparison of renal clearance of [18F]AlF-RESCA-HER2-BCH and [18F]AlF-NOTA-HER2-BCH in mice and breast cancer patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

A novel HER2 affibody-based molecular probe, [18F]AlF-RESCA-HER2-BCH, was developed for reducing renal uptake, evaluated, and compared with [18F]AlF-NOTA-HER2-BCH.

Methods

In preclinical studies, micro-PET/CT was performed using HER2-positive gastric cancer patient-derived xenografts (PDX) model at 0.5-1 (dynamic), 2, 4, and 6 h post-injection. For blocking experiment, 0.5 mg cold affibody was co-injected with probes. Biodistribution were performed on HER2-positive PDX models at 2 h post-injection. For clinical study, PET/CT images were acquired at 2 h and 4 h after injection of 231.29 ± 17.77 MBq [18F]AlF-NOTA-HER2-BCH or [18F]AlF-RESCA-HER2-BCH in five breast cancer patients (4 HER2-positive and 1 HER2-low). Standardized uptake values (SUVs) were measured in tumors and source-organs for semi-quantitative analysis. The OLINDA/EXM software (version 1.2) was used to calculate the radiation doses.

Results

[18F]AlF-NOTA-HER2-BCH and [18F]AlF-RESCA-HER2-BCH were stably labeled with [18F]F, with high binding specificity and affinity to HER2. Micro-PET/CT of both tracers could clearly visualize HER2-positive PDX tumors with high uptake of 16.24 ± 1.74% ID/g and 14.39 ± 2.45% ID/g at 2 h post-injection. The renal accumulation of [18F]AlF-RESCA-HER2-BCH was significantly lower than that of [18F]AlF-NOTA-HER2-BCH (5.16 ± 0.22% ID/g vs. 158.73 ± 5.44% ID/g at 2 h, p < 0.0001). In the clinical study, both [18F]AlF-NOTA-HER2-BCH and [18F]AlF-RESCA-HER2-BCH demonstrated favorable tumor targeting and image contrast. [18F]AlF-RESCA-HER2-BCH showed a higher SUVmax in both primary tumor and metastases, and a significantly higher target-to-nontarget ratio in metastases than [18F]AlF-NOTA-HER2-BCH. Moreover, [18F]AlF-RESCA-HER2-BCH had lower renal accumulation (43.56 ± 7.88 vs. 79.81 ± 3.81 at 2 h, p < 0.0001; 33.23 ± 6.89 vs. 78.63 ± 4.00 at 4 h, p < 0.0001) as well as a significantly lower renal absorbed dose than [18F]AlF-NOTA-HER2-BCH (0.4450 ± 0.1117 mGy/MBq vs. 0.8030 ± 0.1604 mGy/MBq, p < 0.01).

Conclusions

[18F]AlF-RESCA-HER2-BCH tended to provide better image contrast than [18F]AlF-NOTA-HER2-BCH with a higher target-to-nontarget ratio in detection of metastases. Notably, [18F]AlF-RESCA-HER2-BCH had lower renal accumulation than [18F]AlF-NOTA-HER2-BCH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Roskoski R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014;79:34–74.

    Article  CAS  PubMed  Google Scholar 

  2. Meric-Bernstam F, Johnson AM, Dumbrava EEI, Raghav K, Balaji K, Bhatt M, et al. Advances in HER2-targeted therapy: novel agents and opportunities beyond breast and gastric cancer. Clin Cancer Res. 2019;25:2033–41.

    Article  CAS  PubMed  Google Scholar 

  3. Oh D-Y, Bang Y-J. HER2-targeted therapies — a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17:33–48.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu Y, Zhu X, Wei X, Tang C, Zhang W. HER2-targeted therapies in gastric cancer. Biochim Biophys Acta Rev Cancer. 2021;1876: 188549.

    Article  CAS  PubMed  Google Scholar 

  5. Fabi A, Di Benedetto A, Metro G, Perracchio L, Nisticò C, Di Filippo F, et al. HER2 protein and gene variation between primary and metastatic breast cancer: significance and impact on patient care. Clin Cancer Res. 2011;17:2055–64.

    Article  CAS  PubMed  Google Scholar 

  6. Ocaña A, Amir E, Pandiella A. HER2 heterogeneity and resistance to anti-HER2 antibody-drug conjugates. Breast Cancer Res. 2020;22:15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sari E, Guler G, Hayran M, Gullu I, Altundag K, Ozisik Y. Comparative study of the immunohistochemical detection of hormone receptor status and HER-2 expression in primary and paired recurrent/metastatic lesions of patients with breast cancer. Med Oncol Northwood Lond Engl. 2011;28:57–63.

    Article  CAS  Google Scholar 

  8. McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27:15–26.

    Article  CAS  PubMed  Google Scholar 

  9. Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol. 2021;72:185–97.

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Liu Z, Yuan L, Fan K, Zhang Y, Cai W, et al. Radionuclide-based imaging of breast cancer: state of the art. Cancers. 2021;13:5459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, et al. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging. 2021;48:1371–89.

    Article  CAS  PubMed  Google Scholar 

  12. Dijkers ECF, Kosterink JGW, Rademaker AP, Perk LR, van Dongen GAMS, Bart J, et al. Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med. 2009;50:974–81.

    Article  CAS  PubMed  Google Scholar 

  13. Ulaner GA, Lyashchenko SK, Riedl C, Ruan S, Zanzonico PB, Lake D, et al. First-in-human human epidermal growth factor receptor 2–targeted imaging using 89Zr-pertuzumab PET/CT: dosimetry and clinical application in patients with breast cancer. J Nucl Med. 2018;59:900–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo X, Zhu H, Zhou N, Chen Z, Liu T, Liu F, et al. Noninvasive detection of HER2 expression in gastric cancer by 64Cu-NOTA-trastuzumab in PDX mouse model and in patients. Mol Pharm. 2018;15:5174–82.

    Article  CAS  PubMed  Google Scholar 

  15. Löfblom J, Feldwisch J, Tolmachev V, Carlsson J, Ståhl S, Frejd FY. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 2010;584:2670–80.

    Article  PubMed  Google Scholar 

  16. Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsen L, Hard T. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci. 2010;107:15039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsén L, Härd T. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci USA. 2010;107:15039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sörensen J, Sandberg D, Sandström M, Wennborg A, Feldwisch J, Tolmachev V, et al. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111 In-ABY-025 affibody molecule. J Nucl Med. 2014;55:730–5.

    Article  PubMed  Google Scholar 

  19. Sandström M, Lindskog K, Velikyan I, Wennborg A, Feldwisch J, Sandberg D, et al. Biodistribution and radiation dosimetry of the anti-HER2 affibody molecule 68Ga-ABY-025 in breast cancer patients. J Nucl Med. 2016;57:867–71.

    Article  PubMed  Google Scholar 

  20. Baum RP, Prasad V, Müller D, Schuchardt C, Orlova A, Wennborg A, et al. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111 In- or 68 Ga-labeled affibody molecules. J Nucl Med. 2010;51:892–7.

    Article  PubMed  Google Scholar 

  21. Zhou N, Liu C, Guo X, Xu Y, Gong J, Qi C, et al. Impact of 68Ga-NOTA-MAL-MZHER2 PET imaging in advanced gastric cancer patients and therapeutic response monitoring. Eur J Nucl Med Mol Imaging. 2021;48:161–75.

    Article  CAS  PubMed  Google Scholar 

  22. Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem. 2015;26:1–18.

    Article  CAS  PubMed  Google Scholar 

  23. Kramer-Marek G, Kiesewetter DO, Martiniova L, Jagoda E, Lee SB, Capala J. [18F]FBEM-ZHER2:342-Affibody molecule—a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging. 2008;35:1008–18.

    Article  CAS  PubMed  Google Scholar 

  24. Yanai A, Harada R, Iwata R, Yoshikawa T, Ishikawa Y, Furumoto S, et al. Site-specific labeling of F-18 proteins using a supplemented cell-free protein synthesis system and O-2-[18F]fluoroethyl-L-tyrosine: [18F]FET-HER2 affibody molecule. Mol Imaging Biol. 2019;21:529–37.

    Article  CAS  PubMed  Google Scholar 

  25. Glaser M, Iveson P, Hoppmann S, Indrevoll B, Wilson A, Arukwe J, et al. Three methods for 18 F labeling of the HER2-binding affibody molecule ZHER2:2891 including preclinical assessment. J Nucl Med. 2013;54:1981–8.

    Article  CAS  PubMed  Google Scholar 

  26. McBride WJ, Sharkey RM, Karacay H, D’Souza CA, Rossi EA, Laverman P, et al. A novel method of 18F radiolabeling for PET. J Nucl Med. 2009;50:991–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar K, Ghosh A. 18F-AlF labeled peptide and protein conjugates as positron emission tomography imaging pharmaceuticals. Bioconjug Chem. 2018;29:953–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie Q, Liu T, Ding J, Zhou N, Meng X. Synthesis, preclinical evaluation, and a pilot clinical imaging study of [18F]AlF-NOTA-JR11 for neuroendocrine neoplasms compared with [68Ga]Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2021;48:3129–40.

    Article  CAS  PubMed  Google Scholar 

  29. Liu T, Liu C, Xu X, Liu F, Guo X, Li N, et al. Preclinical evaluation and pilot clinical study of Al18F-PSMA-BCH for prostate cancer PET imaging. J Nucl Med. 2019;60:1284–92.

    Article  CAS  PubMed  Google Scholar 

  30. Wållberg H, Orlova A, Altai M, Hosseinimehr SJ, Widström C, Malmberg J, et al. Molecular design and optimization of 99m Tc-labeled recombinant affibody molecules improves their biodistribution and imaging properties. J Nucl Med. 2011;52:461–9.

    Article  PubMed  Google Scholar 

  31. Westerlund K, Honarvar H, Norrström E, Strand J, Mitran B, Orlova A, et al. Increasing the net negative charge by replacement of DOTA chelator with DOTAGA improves the biodistribution of radiolabeled second-generation synthetic affibody molecules. Mol Pharm. 2016;13:1668–78.

    Article  CAS  PubMed  Google Scholar 

  32. Altai M, Strand J, Rosik D, Selvaraju RK, Eriksson Karlström A, Orlova A, et al. Influence of nuclides and chelators on imaging using affibody molecules: comparative evaluation of recombinant affibody molecules site-specifically labeled with 68 Ga and 111 In via Maleimido derivatives of DOTA and NODAGA. Bioconjug Chem. 2013;24:1102–9.

    Article  CAS  PubMed  Google Scholar 

  33. Malmberg J, Perols A, Varasteh Z, Altai M, Braun A, Sandström M, et al. Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with 111In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts. Eur J Nucl Med Mol Imaging. 2012;39:481–92.

    Article  CAS  PubMed  Google Scholar 

  34. Ekblad T, Tran T, Orlova A, Widström C, Feldwisch J, Abrahmsén L, et al. Development and preclinical characterisation of 99mTc-labelled affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging. 2008;35:2245–55.

    Article  CAS  PubMed  Google Scholar 

  35. Cleeren F, Lecina J, Ahamed M, Raes G, Devoogdt N, Caveliers V, et al. Al 18 F-labeling of heat-sensitive biomolecules for positron emission tomography imaging. Theranostics. 2017;7:2924–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou N, Guo X, Yang M, Zhu H, Yang Z. 68Ga-ZHER2 PET/CT reveals HER2-positive metastatic gastric cancer with better image quality than 18F-FDG. Clin Nucl Med. 2020;45:e101–2.

    Article  PubMed  Google Scholar 

  37. Ulaner GA, Hyman DM, Ross DS, Corben A, Chandarlapaty S, Goldfarb S, et al. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-trastuzumab PET/CT. J Nucl Med. 2016;57:1523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lumish MA, Maron SB, Paroder V, Chou JF, Capanu M, Philemond S, et al. Noninvasive assessment of human epidermal growth factor receptor 2 (HER2) in esophagogastric cancer using 89Zr-trastuzumab PET: a pilot study. J Nucl Med. 2022;jnumed.122.264470.

  39. Cleeren F, Lecina J, Bridoux J, Devoogdt N, Tshibangu T, Xavier C, et al. Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method. Nat Protoc. 2018;13:2330–47.

    Article  CAS  PubMed  Google Scholar 

  40. Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, et al. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific affibody molecule. Cancer Res. 2007;67:2773–82.

    Article  CAS  PubMed  Google Scholar 

  41. Orlova A, Tran TA, Ekblad T, Karlström AE, Tolmachev V. 186Re-maSGS-ZHER2:342, a potential affibody conjugate for systemic therapy of HER2-expressing tumours. Eur J Nucl Med Mol Imaging. 2010;37:260–9.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Vorobyeva A, Orlova A, Konijnenberg MW, Xu T, Bragina O, et al. Experimental therapy of HER2-expressing xenografts using the second-generation HER2-targeting affibody molecule 188Re-ZHER2:41071. Pharmaceutics. 2022;14:1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by grants from the National Natural Science Foundation of China (NSFC) (No. 82171980 and 82171973); Capital’s Funds for Health Improvement and Research (No. 2022-2Z-2154 and 2022-2Z-2155); Beijing Hospitals Authority Deng feng Project (DFL20191102); The Pilot Project (4th Round) to Reform Public Development of Beijing Municipal Medical Research Institute (2021-1); Science Foundation of Peking University Cancer Hospital (No. 2021-4 and KC2305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Zhu, Nina Zhou or Zhi Yang.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by Ethics Committee of Beijing Cancer Hospital and Institute (No. 2019KT114).

Informed consent

Informed consent was obtained from the 5 individual participants included in this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Translational research

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 178 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Guo, X., Wen, L. et al. Comparison of renal clearance of [18F]AlF-RESCA-HER2-BCH and [18F]AlF-NOTA-HER2-BCH in mice and breast cancer patients. Eur J Nucl Med Mol Imaging 50, 2775–2786 (2023). https://doi.org/10.1007/s00259-023-06232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06232-1

Keywords

Navigation