Skip to main content
Log in

[68 Ga]Ga-FAPI-46 PET for non-invasive detection of pulmonary fibrosis disease activity

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The lack of effective molecular biomarkers to monitor idiopathic pulmonary fibrosis (IPF) activity or treatment response remains an unmet clinical need. Herein, we determined the utility of fibroblast activation protein inhibitor for positron emission tomography (FAPI PET) imaging in a mouse model of pulmonary fibrosis.

Methods

Pulmonary fibrosis was induced by intratracheal administration of bleomycin (1 U/kg) while intratracheal saline was administered to control mice. Subgroups from each cohort (n = 3–5) underwent dynamic 1 h PET/CT after intravenously injecting FAPI-46 radiolabeled with gallium-68 ([68 Ga]Ga-FAPI-46) at 7 days and 14 days following disease induction. Animals were sacrificed following imaging for ex vivo gamma counting and histologic correlation. [68 Ga]Ga-FAPI-46 uptake was quantified and reported as percent injected activity per cc (%IA/cc) or percent injected activity (%IA). Lung CT density in Hounsfield units (HU) was also correlated with histologic examinations of lung fibrosis.

Results

CT only detected differences in the fibrotic response at 14 days post-bleomycin administration. [68 Ga]Ga-FAPI-46 lung uptake was significantly higher in the bleomycin group than in control subjects at 7 days and 14 days. Significantly (P = 0.0012) increased [68 Ga]Ga-FAPI-46 lung uptake in the bleomycin groups at 14 days (1.01 ± 0.12%IA/cc) vs. 7 days (0.33 ± 0.09%IA/cc) at 60 min post-injection of the tracer was observed. These findings were consistent with an increase in both fibrinogenesis and FAP expression as seen in histology.

Conclusion

CT was unable to assess disease activity in a murine model of IPF. Conversely, FAPI PET detected both the presence and activity of lung fibrogenesis, making it a promising tool for assessing early disease activity and evaluating the efficacy of therapeutic interventions in lung fibrosis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rafii R, Juarez MM, Albertson TE, Chan AL. A review of current and novel therapies for idiopathic pulmonary fibrosis. J Thorac Dis. 2013;5:48–73.

    PubMed  PubMed Central  Google Scholar 

  2. Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 2017;3:17074. https://doi.org/10.1038/nrdp.2017.74.

    Article  PubMed  Google Scholar 

  3. Hutchinson J, Fogarty A, Hubbard R, McKeever T. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J. 2015;46:795–806. https://doi.org/10.1183/09031936.00185114.

    Article  PubMed  Google Scholar 

  4. Lorenz J, Blum M. Complications of percutaneous chest biopsy. Semin Intervent Radiol. 2006;23:188–93. https://doi.org/10.1055/s-2006-941449.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hutchinson JP, Fogarty AW, McKeever TM, Hubbard RB. In-hospital mortality after surgical lung biopsy for interstitial lung disease in the United States.2000 to 2011. Am J Respir Crit Care Med. 2016; 193:1161-1167https://doi.org/10.1164/rccm.201508-1632OC

  6. Spagnolo P, Ryerson CJ, Putman R, Oldham J, Salisbury M, Sverzellati N, et al. Early diagnosis of fibrotic interstitial lung disease: challenges and opportunities. Lancet Respir Med. 2021. https://doi.org/10.1016/S2213-2600(21)00017-5.

    Article  PubMed  Google Scholar 

  7. Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol. 2014;9:157–79. https://doi.org/10.1146/annurev-pathol-012513-104706.

    Article  CAS  PubMed  Google Scholar 

  8. Hardie WD, Glasser SW, Hagood JS. Emerging concepts in the pathogenesis of lung fibrosis. Am J Pathol. 2009;175:3–16. https://doi.org/10.2353/ajpath.2009.081170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Acharya PS, Zukas A, Chandan V, Katzenstein A-LA, Puré E. Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Human Pathology. 2006;37:352–60. https://doi.org/10.1016/j.humpath.2005.11.020.

  10. Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020;39:783–803. https://doi.org/10.1007/s10555-020-09909-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Altmann A, Haberkorn U, Siveke J. The latest developments in imaging of fibroblast activation protein. J Nucl Med. 2021;62:160–7. https://doi.org/10.2967/jnumed.120.244806.

    Article  CAS  PubMed  Google Scholar 

  12. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60:801–5. https://doi.org/10.2967/jnumed.119.227967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watabe T, Liu Y, Kaneda-Nakashima K, Shirakami Y, Lindner T, Ooe K, et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu- and 225Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models. J Nucl Med. 2020;61:563–9. https://doi.org/10.2967/jnumed.119.233122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Syed M, Flechsig P, Liermann J, Windisch P, Staudinger F, Akbaba S, et al. Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers. Eur J Nucl Med Mol Imaging. 2020;47:2836–45. https://doi.org/10.1007/s00259-020-04859-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Niedermeyer J, Scanlan MJ, Garin-Chesa P, Daiber C, Fiebig HH, Old LJ, et al. Mouse fibroblast activation protein: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancers. Int J Cancer. 1997;71:383–9. https://doi.org/10.1002/(SICI)1097-0215(19970502)71:3%3c383::AID-IJC14%3e3.0.CO;2-H.

    Article  CAS  PubMed  Google Scholar 

  16. Goldstein LA, Ghersi G, Piñeiro-Sánchez ML, Monica S, Yeh Y, Flessate D, et al. Molecular cloning of seprase: a serine integral membrane protease from human melanoma. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1997;1361:11–9. https://doi.org/10.1016/S0925-4439(97)00032-X.

  17. Millul J, Bassi G, Mock J, Elsayed A, Pellegrino C, Zana A, et al. An ultra-high-affinity small organic ligand of fibroblast activation protein for tumor-targeting applications. Proc Natl Acad Sci. 2021;118: e2101852118. https://doi.org/10.1073/pnas.2101852118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N, Chiti A. State-of-the-art of FAPI-PET imaging: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05475-0.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Calais J. FAP: the next billion dollar nuclear theranostics target? J Nucl Med. 2020;61:163–5. https://doi.org/10.2967/jnumed.119.241232.

    Article  PubMed  Google Scholar 

  20. Bernau K, Leet JP, Bruhn EM, Tubbs AJ, Zhu T, Sandbo N. Expression of serum response factor in the lung mesenchyme is essential for development of pulmonary fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2021;321:L174–88. https://doi.org/10.1152/ajplung.00323.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci. 2021;78:2031–57. https://doi.org/10.1007/s00018-020-03693-7.

    Article  CAS  PubMed  Google Scholar 

  22. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. The Lancet. 2017;389:1941–52. https://doi.org/10.1016/S0140-6736(17)30866-8.

    Article  Google Scholar 

  23. Meyer C, Dahlbom M, Lindner T, Vauclin S, Mona C, Slavik R, et al. Radiation dosimetry and biodistribution of 68Ga-FAPI-46 PET imaging in cancer patients. J Nucl Med. 2020;61:1171–7. https://doi.org/10.2967/jnumed.119.236786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Loktev A, Lindner T, Burger E-M, Altmann A, Giesel F, Kratochwil C, et al. Development of fibroblast activation protein–targeted radiotracers with improved tumor retention. J Nucl Med. 2019;60:1421–9. https://doi.org/10.2967/jnumed.118.224469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Röhrich M, Naumann P, Giesel FL, Choyke P, Staudinger F, Wefers A, et al. Impact of 68Ga-FAPI-PET/CT imaging on the therapeutic management of primary and recurrent pancreatic ductal adenocarcinomas. Journal of Nuclear Medicine. 2020:jnumed.120.253062. https://doi.org/10.2967/jnumed.120.253062.

  26. Bernau K, Ngam C, Torr EE, Acton B, Kach J, Dulin NO, et al. Megakaryoblastic leukemia-1 is required for the development of bleomycin-induced pulmonary fibrosis. Respir Res. 2015;16:45. https://doi.org/10.1186/s12931-015-0206-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernau K, Skibba M, Leet JP, Furey S, Gehl C, Li Y, et al. Selective inhibition of bromodomain-containing protein 4 reduces myofibroblast transdifferentiation and pulmonary fibrosis. Front Mol Med. 2022;2. https://doi.org/10.3389/fmmed.2022.842558.

  28. Scotton CJ, Hayes B, Alexander R, Datta A, Forty EJ, Mercer PF, et al. Ex vivo micro-computed tomography analysis of bleomycin-induced lung fibrosis for preclinical drug evaluation. Eur Respir J. 2013;42:1633. https://doi.org/10.1183/09031936.00182412.

    Article  CAS  PubMed  Google Scholar 

  29. Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol. 1988;41:467–70. https://doi.org/10.1136/jcp.41.4.467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dorr RT. Bleomycin pharmacology: mechanism of action and resistance, and clinical pharmacokinetics. Semin Oncol. 1992;19:3–8.

    CAS  PubMed  Google Scholar 

  31. Bondue B, Sherer F, Van Simaeys G, Doumont G, Egrise D, Yakoub Y, et al. PET/CT with 18F-FDG– and 18F-FBEM–labeled leukocytes for metabolic activity and leukocyte recruitment monitoring in a mouse model of pulmonary fibrosis. J Nucl Med. 2015;56:127–32. https://doi.org/10.2967/jnumed.114.147421.

    Article  CAS  PubMed  Google Scholar 

  32. Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med. 2018;378:1811–23. https://doi.org/10.1056/NEJMra1705751.

    Article  CAS  PubMed  Google Scholar 

  33. Vaszar LT, Larsen BT, Swanson KL, Ryu JH, Tazelaar HD. Diagnostic utility of surgical lung biopsies in elderly patients with indeterminate interstitial lung disease. Respirology. 2018;23:507–11. https://doi.org/10.1111/resp.13223.

    Article  PubMed  Google Scholar 

  34. Hewson T, McKeever TM, Gibson JE, Navaratnam V, Hubbard RB, Hutchinson JP. Timing of onset of symptoms in people with idiopathic pulmonary fibrosis. Thorax. 2018;73:683–5. https://doi.org/10.1136/thoraxjnl-2017-210177.

    Article  Google Scholar 

  35. Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu Rev Pathol. 2021. https://doi.org/10.1146/annurev-pathol-042320-030240.

    Article  PubMed  Google Scholar 

  36. Hung C, Linn G, Chow Y-H, Kobayashi A, Mittelsteadt K, Altemeier WA, et al. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2013;188:820–30. https://doi.org/10.1164/rccm.201212-2297OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parker MW, Rossi D, Peterson M, Smith K, Sikström K, White ES, et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Investig. 2014;124:1622–35. https://doi.org/10.1172/JCI71386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liao Y, Ni Y, He R, Liu W, Du J. Clinical implications of fibroblast activation protein-α in non-small cell lung cancer after curative resection: a new predictor for prognosis. J Cancer Res Clin Oncol. 2013;139:1523–8. https://doi.org/10.1007/s00432-013-1471-8.

    Article  CAS  PubMed  Google Scholar 

  39. Varasteh Z, Mohanta S, Robu S, Braeuer M, Li Y, Omidvari N, et al. Molecular imaging of fibroblast activity after myocardial infarction using a 68Ga-labeled fibroblast activation protein inhibitor, FAPI-04. J Nucl Med. 2019;60:1743–9. https://doi.org/10.2967/jnumed.119.226993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jacob M, Chang L, Puré E. Fibroblast activation protein in remodeling tissues. Curr Mol Med. 2012;12:1220–43. https://doi.org/10.2174/156652412803833607.

    Article  CAS  PubMed  Google Scholar 

  41. Wenlong L, Leilei Y, Wei F, Yi C, Jing T, Lanzhi M, et al. Luciferase expression is driven by the promoter of fibroblast activation protein-α in murine pulmonary fibrosis. Biotech Lett. 2015;37:1757–63. https://doi.org/10.1007/s10529-015-1855-8.

    Article  CAS  Google Scholar 

  42. Fan M-H, Zhu Q, Li H-H, Ra H-J, Majumdar S, Gulick DL, et al. Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lungs in mice*. J Biol Chem. 2016;291:8070–89. https://doi.org/10.1074/jbc.M115.701433.

    Article  CAS  PubMed  Google Scholar 

  43. Egger C, Cannet C, Gérard C, Suply T, Ksiazek I, Jarman E, et al. Effects of the fibroblast activation protein inhibitor, PT100, in a murine model of pulmonary fibrosis. Eur J Pharmacol. 2017;809:64–72. https://doi.org/10.1016/j.ejphar.2017.05.022.

    Article  CAS  PubMed  Google Scholar 

  44. Röhrich M, Leitz D, Glatting FM, Wefers AK, Weinheimer O, Flechsig P, et al. Fibroblast activation protein specific PET/CT imaging in fibrotic interstitial lung diseases and lung cancer: a translational exploratory study. Journal of Nuclear Medicine. 2021:jnumed.121.261925. https://doi.org/10.2967/jnumed.121.261925.

  45. Bergmann C, Distler JHW, Treutlein C, Tascilar K, Müller A-T, Atzinger A, et al. 68Ga-FAPI-04 PET-CT for molecular assessment of fibroblast activation and risk evaluation in systemic sclerosis-associated interstitial lung disease: a single-centre, pilot study. The Lancet Rheumatology. 2021;3:e185–94. https://doi.org/10.1016/S2665-9913(20)30421-5.

    Article  Google Scholar 

  46. Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol. 2002;83:111–9. https://doi.org/10.1046/j.1365-2613.2002.00220.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Williamson JD, Sadofsky LR, Hart SP. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res. 2015;41:57–73. https://doi.org/10.3109/01902148.2014.979516.

    Article  CAS  PubMed  Google Scholar 

  48. Bleeker-Rovers CP, Boerman OC, Rennen HJ, Corstens FH, Oyen WJ. Radiolabeled compounds in diagnosis of infectious and inflammatory disease. Curr Pharm Des. 2004;10:2935–50. https://doi.org/10.2174/1381612043383539.

    Article  CAS  PubMed  Google Scholar 

  49. Chaudhary NI, Schnapp A, Park JE. Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am J Respir Crit Care Med. 2006;173:769–76. https://doi.org/10.1164/rccm.200505-717OC.

    Article  CAS  PubMed  Google Scholar 

  50. Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol. 2008;40:362–82. https://doi.org/10.1016/j.biocel.2007.08.011.

    Article  CAS  PubMed  Google Scholar 

  51. Shea BS, Brooks SF, Fontaine BA, Chun J, Luster AD, Tager AM. Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am J Respir Cell Mol Biol. 2010;43:662–73. https://doi.org/10.1165/rcmb.2009-0345OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Désogère P, Tapias LF, Hariri LP, Rotile NJ, Rietz TA, Probst CK, et al. Type I collagen–targeted PET probe for pulmonary fibrosis detection and staging in preclinical models. Science Translational Medicine. 2017;9:eaaf4696. https://doi.org/10.1126/scitranslmed.aaf4696.

  53. Meissner HH, Soo Hoo GW, Khonsary SA, Mandelkern M, Brown CV, Santiago SM. Idiopathic pulmonary fibrosis: evaluation with positron emission tomography. Respiration. 2006;73:197–202. https://doi.org/10.1159/000088062.

    Article  PubMed  Google Scholar 

  54. Withana NP, Ma X, McGuire HM, Verdoes M, van der Linden WA, Ofori LO, et al. Non-invasive imaging of idiopathic pulmonary fibrosis using cathepsin protease probes. Sci Rep. 2016;6:19755. https://doi.org/10.1038/srep19755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kimura RH, Wang L, Shen B, Huo L, Tummers W, Filipp FV, et al. Evaluation of integrin αvβ6 cystine knot PET tracers to detect cancer and idiopathic pulmonary fibrosis. Nat Commun. 2019;10:4673. https://doi.org/10.1038/s41467-019-11863-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brody SL, Gunsten SP, Luehmann HP, Sultan DH, Hoelscher M, Heo GS, et al. Chemokine receptor 2–targeted molecular imaging in pulmonary fibrosis. Am J Respir Crit Care Med. 2021;203:78–89. https://doi.org/10.1164/rccm.202004-1132OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Désogère P, Tapias LF, Rietz TA, Rotile N, Blasi F, Day H, et al. Optimization of a collagen-targeted pet probe for molecular imaging of pulmonary fibrosis. J Nucl Med. 2017;58:1991–6. https://doi.org/10.2967/jnumed.117.193532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wahsner J, Désogère P, Abston E, Graham-O’Regan KA, Wang J, Rotile NJ, et al. (68)Ga-NODAGA-indole: an allysine-reactive positron emission tomography probe for molecular imaging of pulmonary fibrogenesis. J Am Chem Soc. 2019;141:5593–6. https://doi.org/10.1021/jacs.8b12342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Akam EA, Abston E, Rotile NJ, Slattery HR, Zhou IY, Lanuti M, et al. Improving the reactivity of hydrazine-bearing MRI probes for in vivo imaging of lung fibrogenesis. Chem Sci. 2020;11:224–31. https://doi.org/10.1039/c9sc04821a.

    Article  CAS  PubMed  Google Scholar 

  60. Win T, Screaton NJ, Porter JC, Ganeshan B, Maher TM, Fraioli F, et al. Pulmonary 18F-FDG uptake helps refine current risk stratification in idiopathic pulmonary fibrosis (IPF). Eur J Nucl Med Mol Imaging. 2018;45:806–15. https://doi.org/10.1007/s00259-017-3917-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–40. https://doi.org/10.1038/nm.2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Small Animal Imaging and Radiotherapy (SAIRF) facility at UW-Madison maintaining facilities for acquiring PET/CT, including support through the Cancer Center Support Grant NCI P30CA014520. The author(s) thank the University of Wisconsin Translational Research Initiatives in Pathology laboratory (TRIP), supported by the UW Department of Pathology and Laboratory Medicine, UWCCC (P30 CA014520) and the Office of The Director- NIH (S10 OD023526) for use of its facilities and services.”

Funding

This work was supported in part by the University of Wisconsin-Madison, the National Institutes of Health (R01HL146402), and the Department of Defense (Early Investigator Award, W81XWH1910285). Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number T32CA009206. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to, read, and approved the manuscript. Z. T. R. and R. H. conceived the idea and designed the study. Z. T. R., C. F. M., and C. A. F. conducted the imaging experiments. K. B. and N. S. established the pulmonary fibrosis model. J. J. S. analyzed tissue staining. J. M. B. produced Ga-68. M. M., F. V., and C. R. D. prepared the FAPI-46 compound. J. J. J., A. B. M., and A. P. contributed through discussion.

Corresponding authors

Correspondence to Ali Pirasteh or Reinier Hernandez.

Ethics declarations

Ethics approval and consent to participate

All animal studies were conducted under protocols approved by the Institutional Animal Care and Use Committee at the University of Wisconsin-Madison.

Consent for publication

Not applicable.

Competing interests

A. P. receives departmental research support from GE Healthcare. A. P. serves as a consultant for TheraCea and Sanofi Genzyme. M. M., F. V., and C. R. D. are all current (F. V.) or former employees (M. M., C. R. D.) at SOFIE. All other authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preclinical Imaging.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3905 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenkrans, Z.T., Massey, C.F., Bernau, K. et al. [68 Ga]Ga-FAPI-46 PET for non-invasive detection of pulmonary fibrosis disease activity. Eur J Nucl Med Mol Imaging 49, 3705–3716 (2022). https://doi.org/10.1007/s00259-022-05814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05814-9

Keywords

Navigation