Skip to main content

Advertisement

Log in

Lymphoma: current status of clinical and preclinical imaging with radiolabeled antibodies

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Lymphoma is a complex disease that arises from cells of the immune system with an intricate pathology. While lymphoma may be classified as Hodgkin or non-Hodgkin, each type of tumor is genetically and phenotypically different and highly invasive tissue biopsies are the only method to investigate these differences. Noninvasive imaging strategies, such as immunoPET, can provide a vital insight into disease staging, monitoring treatment response in patients, and dose planning in radioimmunotherapy. ImmunoPET imaging with radiolabeled antibody-based tracers may also assist physicians in optimizing treatment strategies and enhancing patient stratification. Currently, there are two common biomarkers for molecular imaging of lymphoma, CD20 and CD30, both of which have been considered for investigation in preclinical imaging studies. In this review, we examine the current status of both preclinical and clinical imaging of lymphoma using radiolabeled antibodies. Additionally, we briefly investigate the role of radiolabeled antibodies in lymphoma therapy. As radiolabeled antibodies play critical roles in both imaging and therapy of lymphoma, the development of novel antibodies and the discovery of new biomarkers may greatly affect lymphoma imaging and therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27.

    Article  PubMed  CAS  Google Scholar 

  2. Engels EA. Infectious agents as causes of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2007;16(3):401–404.

    Article  CAS  PubMed  Google Scholar 

  3. Cerhan JR, Slager SL. Familial predisposition and genetic risk factors for lymphoma. Blood. 2015;126(20):2265–2273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–5032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390.

    Article  PubMed  Google Scholar 

  6. Swerdlow SH. Lymphoma classification and the tools of our trade: an introduction to the 2012 USCAP Long Course. Mod Pathol. 2013;26 Suppl 1:S1–S14.

    Article  CAS  PubMed  Google Scholar 

  7. Turner JJ, Hughes AM, Kricker A, et al. WHO non-Hodgkin’s lymphoma classification by criterion-based report review followed by targeted pathology review: an effective strategy for epidemiology studies. Cancer Epidemiol Biomarkers Prev. 2005;14(9):2213–2219.

    Article  PubMed  Google Scholar 

  8. Armitage JO. Early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):653–662.

    Article  CAS  PubMed  Google Scholar 

  9. Dotan E, Aggarwal C, Smith MR. Impact of rituximab (Rituxan) on the treatment of B-cell non-Hodgkin’s lymphoma. Pharm Ther. 2010;35(3):148–157.

    Google Scholar 

  10. Meng F, Zhong D, Zhang L, Shao Y, Ma Q. Efficacy and safety of rituximab combined with chemotherapy in the treatment of diffuse large B-cell lymphoma: a meta-analysis. Int J Clin Exp Med. 2015;8(10):17515–17522.

    PubMed  PubMed Central  Google Scholar 

  11. Rukstalis DB. Treatment options after failure of radiation therapy – a review. Rev Urol. 2002;4 Suppl 2:S12–S17.

    PubMed  PubMed Central  Google Scholar 

  12. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13(5):273–90.

    Article  CAS  PubMed  Google Scholar 

  13. Zappasodi R, de Braud F, Di Nicola M. Lymphoma immunotherapy: current status. Front Immunol. 2015;6:448–454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kharfan-Dabaja MA, Hamadani M, Sibai H, Savani BN. Managing Hodgkin lymphoma relapsing after autologous hematopoietic cell transplantation: a not-so-good cancer after all. Bone Marrow Transplant. 2014;49(5):599–606.

    Article  CAS  PubMed  Google Scholar 

  15. Toma P, Granata C, Rossi A, Garaventa A. Multimodality imaging of Hodgkin disease and non-Hodgkin lymphomas in children. Radiographics. 2007;27(5):1335–1354.

    Article  PubMed  Google Scholar 

  16. Gobbi PG, Ferreri AJ, Ponzoni M, Levis A. Hodgkin lymphoma. Crit Rev Oncol Hematol. 2013;85(2):216–237.

    Article  PubMed  Google Scholar 

  17. Luminari S, Bellei M, Biasoli I, Federico M. Follicular lymphoma – treatment and prognostic factors. Rev Bras Hematol Hemoter. 2012;34(1):54–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferrer R. Lymphadenopathy: differential diagnosis and evaluation. Am Fam Physician. 1998;58(6):1313–1320.

    CAS  PubMed  Google Scholar 

  19. Jung W, Trumper L. Differential diagnosis and diagnostic strategies of lymphadenopathy. Internist (Berl). 2008;49(3):305–318.

    Article  CAS  Google Scholar 

  20. Wang H, Qiu LN, Wu M, et al. Secondary B-cell lymphoma diagnosed by fine-needle aspiration cytology and flow cytometry following penile carcinoma: a case report. Oncol Lett. 2016;11(4):2449–2452.

    PubMed  PubMed Central  Google Scholar 

  21. Demurtas A, Accinelli G, Pacchioni D, et al. Utility of flow cytometry immunophenotyping in fine-needle aspirate cytologic diagnosis of non-Hodgkin lymphoma: a series of 252 cases and review of the literature. Appl Immunohistochem Mol Morphol. 2010;18(4):311–22.

    Article  PubMed  Google Scholar 

  22. Beaty MW, Geisinger KR. Hodgkin lymphoma: flow me? Cytojournal. 2005;2(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zeppa P, Marino G, Troncone G, et al. Fine-needle cytology and flow cytometry immunophenotyping and subclassification of non-Hodgkin lymphoma: a critical review of 307 cases with technical suggestions. Cancer. 2004;102(1):55–65.

    Article  PubMed  Google Scholar 

  24. Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat Rev Immunol. 2012;12(3):191–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Reichard KK, Robinett S. Detection of genetic translocations in lymphoma using fluorescence in situ hybridization. Methods Mol Biol. 2013;999:189–202.

    Article  CAS  PubMed  Google Scholar 

  26. Friedberg JW, Chengazi V. PET scans in the staging of lymphoma: current status. Oncologist. 2003;8(5):438–447.

    Article  PubMed  Google Scholar 

  27. Wu AM, Olafsen T. Antibodies for molecular imaging of cancer. Cancer J. 2008;14(3):191–197.

    Article  CAS  PubMed  Google Scholar 

  28. Abdel Gawad EA, Abu Samra MF, Talat AM. The utility of multi-detector CT in detection and characterization of mesenteric lymphadenopathy with histopathological confirmation. Egypt J Radiol Nucl Med. 2016;47(3):757–764.

    Article  Google Scholar 

  29. Kwee TC, Kwee RM, Nievelstein RA. Imaging in staging of malignant lymphoma: a systematic review. Blood. 2008;111(2):504–516.

    Article  CAS  PubMed  Google Scholar 

  30. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–3058.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kwee TC, Takahara T, Vermoolen MA, Bierings MB, Mali WP, Nievelstein RA. Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol. 2010;40(10):1592–1602.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kwee TC, van Ufford HM, Beek FJ, et al. Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Invest Radiol. 2009;44(10):683–690.

    Article  PubMed  Google Scholar 

  33. Edwards CL, Hayes RL. Tumor scanning with 67Ga citrate. J Nucl Med. 1969;10(2):103–105.

    CAS  PubMed  Google Scholar 

  34. Pinsky SM, Henkin RE. Gallium-67 tumor scanning. Semin Nucl Med. 1976;6(4):397–409.

    Article  CAS  PubMed  Google Scholar 

  35. Andrews GA, Edwards CL. Tumor scanning with gallium 67. JAMA. 1975;233(10):1100–1103.

    Article  CAS  PubMed  Google Scholar 

  36. Adler S, Parthasarathy KL, Bakshi SP, Stutzman L. Gallium-67-citrate scanning for the localization and staging of lymphomas. J Nucl Med. 1975;16(4):255–260.

    CAS  PubMed  Google Scholar 

  37. van Leeuwen-Stok AE, Schuurhuis GJ, Drager AM, Visser-Platier AW, Teule GJ, Huijgens PC. Effect of modulation of the transferrin receptor on gallium-67 uptake and cytotoxicity in lymphoma cell lines. Br J Cancer. 1996;74(4):619–624.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Horn NL, Ray GR, Kriss JP. Gallium-67 citrate scanning in Hodgkin’s disease and non-Hodgkin’s lymphoma. Cancer. 1976;37(1):250–257.

    Article  CAS  PubMed  Google Scholar 

  39. Cwikla JB, Buscombe JR, Thakrar DS, Irwin AG, Hilson AJ. 67Ga SPECT in detection of infection and inflammation. Nucl Med Rev Cent East Eur. 1999;2(2):69–73.

    CAS  PubMed  Google Scholar 

  40. Kostakoglu L, Yeh SD, Portlock C, et al. Validation of gallium-67-citrate single-photon emission computed tomography in biopsy-confirmed residual Hodgkin’s disease in the mediastinum. J Nucl Med. 1992;33(3):345–350.

    CAS  PubMed  Google Scholar 

  41. Fuertes MJ, Estorch CM, Camacho MV, et al. SPECT-CT 67Ga studies in lymphoma disease. Contribution to staging and follow-up. Rev Esp Med Nucl. 2006;25(4):242–249.

    Article  Google Scholar 

  42. Iagaru A, Goris ML, Gambhir SS. Perspectives of molecular imaging and radioimmunotherapy in lymphoma. Radiol Clin N Am. 2008;46(2):243–252.

    Article  PubMed  Google Scholar 

  43. Paul R. Comparison of fluorine-18-2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J Nucl Med. 1987;28(3):288–292.

    CAS  PubMed  Google Scholar 

  44. Hoh CK, Glaspy J, Rosen P, et al. Whole-body FDG-PET imaging for staging of Hodgkin’s disease and lymphoma. J Nucl Med. 1997;38(3):343–348.

    CAS  PubMed  Google Scholar 

  45. Kostakoglu L, Leonard JP, Kuji I, Coleman M, Vallabhajosula S, Goldsmith SJ. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer. 2002;94(4):879–88.

    Article  PubMed  Google Scholar 

  46. Bar-Shalom R, Yefremov N, Haim N, et al. Camera-based FDG PET and 67Ga SPECT in evaluation of lymphoma: comparative study. Radiology. 2003;227(2):353–60.

    Article  PubMed  Google Scholar 

  47. Yang CC, Sun SS, Lin CC, Kao CH, Lee CC. Comparison of technetium-99m tetrofosmin and gallium-67 citrate scintigraphy for detecting malignant lymphoma. Anticancer Res. 2001;21(5):3695–3698.

    CAS  PubMed  Google Scholar 

  48. Shen YY, Kao A, Yen RF. Comparison of 18F-fluoro-2-deoxyglucose positron emission tomography and gallium-67 citrate scintigraphy for detecting malignant lymphoma. Oncol Rep. 2002;9(2):321–325.

    PubMed  Google Scholar 

  49. Talbot JN, Haioun C, Rain JD, et al. [18F]-FDG positron imaging in clinical management of lymphoma patients. Crit Rev Oncol Hematol. 2001;38(3):193–221.

    Article  CAS  PubMed  Google Scholar 

  50. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med. 2002;43(8):1018–1027.

    PubMed  Google Scholar 

  51. Mikhaeel NG, Hutchings M, Fields PA, O’Doherty MJ, Timothy AR. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol. 2005;16(9):1514–1523.

    Article  CAS  PubMed  Google Scholar 

  52. Langer A. A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a cost-effective manner? BMC Health Serv Res. 2010;10(1):283.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Girinsky T, Auperin A, Ribrag V, et al. Role of FDG-PET in the implementation of involved-node radiation therapy for Hodgkin lymphoma patients. Int J Radiat Oncol Biol Phys. 2014;89(5):1047–1052.

    Article  PubMed  Google Scholar 

  54. Rahmouni A, Luciani A, Itti E. MRI and PET in monitoring response in lymphoma. Cancer Imaging. 2005;5(Spec No A):S106–S112.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Haldorsen IS, Espeland A, Larsson EM. Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. Am J Neuroradiol. 2011;32(6):984–992.

    Article  CAS  PubMed  Google Scholar 

  56. Carter BW, Wu CC, Khorashadi L, et al. Multimodality imaging of cardiothoracic lymphoma. Eur J Radiol. 2014;83(8):1470–1482.

    Article  PubMed  Google Scholar 

  57. Stephane V, Samuel B, Vincent D, et al. Comparison of PET-CT and magnetic resonance diffusion weighted imaging with body suppression (DWIBS) for initial staging of malignant lymphomas. Eur J Radiol. 2013;82(11):2011–7.

    Article  PubMed  Google Scholar 

  58. Akay S, Kocaoglu M, Emer O, Battal B, Arslan N. Diagnostic accuracy of whole-body diffusion-weighted magnetic resonance imaging with 3.0 T in detection of primary and metastatic neoplasms. J Med Imaging Radiat Oncol. 2013;57(3):274–282.

    Article  PubMed  Google Scholar 

  59. Palomero T, Ferrando AA. Genomic tools for dissecting oncogenic transcriptional networks in human leukemia. Leukemia. 2009;23(7):1236–1242.

    Article  CAS  PubMed  Google Scholar 

  60. Johnson NA, Savage KJ, Ludkovski O, et al. Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood. 2009;114(11):2273–2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li S, Lin P, Young KH, Kanagal-Shamanna R, Yin CC, Medeiros LJ. MYC/BCL2 double-hit high-grade B-cell lymphoma. Adv Anat Pathol. 2013;20(5):315–326.

    Article  CAS  PubMed  Google Scholar 

  62. Battey J, Moulding C, Taub R, et al. The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell. 1983;34(3):779–787.

    Article  CAS  PubMed  Google Scholar 

  63. Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood. 2013;122(24):3884–3491.

  64. Taub R, Kirsch I, Morton C, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982;79(24):7837–7841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM. The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med. 1988;167(2):353–371.

    Article  CAS  PubMed  Google Scholar 

  66. Sheppard RD, Samant SA, Rosenberg M, Silver LM, Cole MD. Transgenic N-myc mouse model for indolent B cell lymphoma: tumor characterization and analysis of genetic alterations in spontaneous and retrovirally accelerated tumors. Oncogene. 1998;17(16):2073–2085.

    Article  CAS  PubMed  Google Scholar 

  67. Kovalchuk AL, Qi CF, Torrey TA, et al. Burkitt lymphoma in the mouse. J Exp Med. 2000;192(8):1183–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27(50):6398–6406.

    Article  CAS  PubMed  Google Scholar 

  69. Wang CG, Tai YH, Lisanti MP, Liao DJ. c-Myc induction of programmed cell death may contribute to carcinogenesis a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther. 2011;11(7):615–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kirkin V, Joos S, Zornig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta. 2004;1644(2-3):229–249.

    Article  CAS  PubMed  Google Scholar 

  71. Eischen CM, Woo D, Roussel MF, Cleveland JL. Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Mol Cell Biol. 2001;21(15):5063–5070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Donnou S, Galand C, Touitou V, Sautes-Fridman C, Fabry Z, Fisson S. Murine models of B-cell lymphomas: promising tools for designing cancer therapies. Adv Hematol. 2012;2012:701–704.

    Article  CAS  Google Scholar 

  73. Kasama Y, Sekiguchi S, Saito M, et al. Persistent expression of the full genome of hepatitis C virus in B cells induces spontaneous development of B-cell lymphomas in vivo. Blood. 2010;116(23):4926–4933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jinadasa R, Balmus G, Gerwitz L, Roden J, Weiss R, Duhamel G. Derivation of thymic lymphoma T-cell lines from Atm(-/-) and p53(-/-) mice. J Vis Exp. 2011;50, 2598.

    Google Scholar 

  75. Dranoff G. Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat Rev Immunol. 2012;12(1):61–66.

    CAS  Google Scholar 

  76. Klein AS, Plata F, Jackson MJ, Shin S. Cellular tumorigenicity in nude mice. Role of susceptibility to natural killer cells. Exp Cell Biol. 1979;47(6):430–445.

    CAS  PubMed  Google Scholar 

  77. Hanna N. The role of natural killer cells in the control of tumor growth and metastasis. Biochim Biophys Acta. 1985;780(3):213–226.

    CAS  PubMed  Google Scholar 

  78. O’Connor OA, Toner LE, Vrhovac R, Budak-Alpdogan T, Smith EA, Bergman P. Comparative animal models for the study of lymphohematopoietic tumors: strengths and limitations of present approaches. Leuk Lymphoma. 2005;46(7):973–992.

    Article  PubMed  Google Scholar 

  79. Hunter RF, Roth PA, Huang AT. Cutaneous T cell lymphoma. Lymphocyte phenotype analysis after anti-thymocyte globulin therapy. Am J Med. 1985;79(5):653–658.

    Article  CAS  PubMed  Google Scholar 

  80. Imada K. Immunodeficient mouse models of lymphoid tumors. Int J Hematol. 2003;77(4):336–341.

    Article  PubMed  Google Scholar 

  81. Volpe R, Kasuga Y, Akasu F, et al. The use of the severe combined immunodeficient mouse and the athymic "nude" mouse as models for the study of human autoimmune thyroid disease. Clin Immunol Immunopathol. 1993;67(2):93–99.

    Article  CAS  PubMed  Google Scholar 

  82. Shimada K, Shimada S, Sugimoto K, et al. Development and analysis of patient-derived xenograft mouse models in intravascular large B-cell lymphoma. Leukemia. 2016;30(7):1568–1579.

    Article  CAS  PubMed  Google Scholar 

  83. Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–130.

    Article  CAS  PubMed  Google Scholar 

  85. Ali N, Flutter B, Sanchez Rodriguez R, et al. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rgammanull mice display a T-effector memory phenotype. PLoS One. 2012;7(8), e44219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Covassin L, Jangalwe S, Jouvet N, et al. Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rgamma(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin Exp Immunol. 2013;174(3):372–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Keating GM. Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma. Drugs. 2010;70(11):1445–1476.

    Article  CAS  PubMed  Google Scholar 

  88. Plosker GL, Figgitt DP. Rituximab: a review of its use in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs. 2003;63(8):803–843.

    Article  CAS  PubMed  Google Scholar 

  89. Barakzai MA, Pervez S. CD20 positivity in classical Hodgkin’s lymphoma: diagnostic challenge or targeting opportunity. Indian J Pathol Microbiol. 2009;52(1):6–9.

    Article  PubMed  Google Scholar 

  90. Avivi I, Stroopinsky D, Katz T. Anti-CD20 monoclonal antibodies: beyond B-cells. Blood Rev. 2013;27(5):217–223.

    Article  CAS  PubMed  Google Scholar 

  91. Grillo-Lopez AJ, White CA, Varns C, et al. Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol. 1999;26(5 Suppl 14):66–73.

    CAS  PubMed  Google Scholar 

  92. Grillo-Lopez AJ, White CA, Dallaire BK, et al. Rituximab: the first monoclonal antibody approved for the treatment of lymphoma. Curr Pharm Biotechnol. 2000;1(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  93. Natarajan A, Habte F, Gambhir SS. Development of a novel long-lived immunoPET tracer for monitoring lymphoma therapy in a humanized transgenic mouse model. Bioconjug Chem. 2012;23(6):1221–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang Y, Hong H, Cai W. PET tracers based on zirconium-89. Curr Radiopharm. 2011;4(2):131–139.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Natarajan A, Gambhir SS. Radiation dosimetry study of [(89)Zr]rituximab tracer for clinical translation of B cell NHL Imaging using positron emission tomography. Mol Imaging Biol. 2015;17(4):539–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Natarajan A, Habte F, Liu H, et al. Evaluation of 89Zr-rituximab tracer by Cerenkov luminescence imaging and correlation with PET in a humanized transgenic mouse model to image NHL. Mol Imaging Biol. 2013;15(4):468–475.

    Article  PubMed  Google Scholar 

  97. Natarajan A, Gowrishankar G, Nielsen CH, et al. Positron emission tomography of 64Cu-DOTA-rituximab in a transgenic mouse model expressing human CD20 for clinical translation to image NHL. Mol Imaging Biol. 2012;14(5):608–616.

    Article  PubMed  Google Scholar 

  98. Fontan C, Bezombes C, Salabert AS, et al. Radiolabelling rituximab with (99m)Tc in three steps procedure. J Labelled Comp Radiopharm. 2015;58(7):274–280.

    Article  CAS  PubMed  Google Scholar 

  99. Biffi S, Garrovo C, Macor P, et al. In vivo biodistribution and lifetime analysis of Cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft using time-domain near-infrared optical imaging. Mol Imaging. 2008;7(6):272–282.

    CAS  PubMed  Google Scholar 

  100. Olafsen T, Betting D, Kenanova VE, et al. Recombinant anti-CD20 antibody fragments for small-animal PET imaging of B-cell lymphomas. J Nucl Med. 2009;50(9):1500–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Olafsen T, Sirk SJ, Betting DJ, et al. ImmunoPET imaging of B-cell lymphoma using 124I-anti-CD20 scFv dimers (diabodies). Protein Eng Des Sel. 2010;23(4):243–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Paudyal P, Paudyal B, Iida Y, et al. Dual functional molecular imaging probe targeting CD20 with PET and optical imaging. Oncol Rep. 2009;22(1):115–119.

    Article  CAS  PubMed  Google Scholar 

  103. Mendler CT, Friedrich L, Laitinen I, et al. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation. MAbs. 2015;7(1):96–109.

    Article  CAS  PubMed  Google Scholar 

  104. Younes A, Kadin ME. Emerging applications of the tumor necrosis factor family of ligands and receptors in cancer therapy. J Clin Oncol. 2003;21(18):3526–3534.

    Article  CAS  PubMed  Google Scholar 

  105. Durkop H, Foss HD, Eitelbach F, et al. Expression of the CD30 antigen in non-lymphoid tissues and cells. J Pathol. 2000;190(5):613–618.

    Article  CAS  PubMed  Google Scholar 

  106. Li P, Jiang L, Zhang X, Liu J, Wang H. CD30 expression is a novel prognostic indicator in extranodal natural killer/T-cell lymphoma, nasal type. BMC Cancer. 2014;14:890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Sharman JP, Goldschmidt JH, Burke JM, Hellerstedt BA, McIntyre K, Yasenchak CA, et al. CD30 expression in nonlymphomatous malignancies. J Clin Oncol. 2012;30 Suppl, abstract 3069.

  108. Newland AM, Li JX, Wasco LE, Aziz MT, Lowe DK. Brentuximab vedotin: a CD30-directed antibody-cytotoxic drug conjugate. Pharmacotherapy. 2013;33(1):93–104.

    Article  CAS  PubMed  Google Scholar 

  109. Nagai H. Recent advances in Hodgkin lymphoma: interim PET and molecular-targeted therapy. J Clin Oncol. 2015;45(2):137–145.

    Google Scholar 

  110. Schirrmann T, Steinwand M, Wezler X, Ten Haaf A, Tur MK, Barth S. CD30 as a therapeutic target for lymphoma. BioDrugs. 2014;28(2):181–209.

    Article  CAS  PubMed  Google Scholar 

  111. Kim W. Utilizing CD30 expression as a rational target for therapy of lymphoma. J Hematol Oncol. 2012;5 Suppl 1:A2.

    Article  PubMed Central  Google Scholar 

  112. Engert A. CD30-positive malignant lymphomas: time for a change of management? Haematologica. 2013;98(8):1165–1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moss A, Gudas J, Albertson T, Whiting N, Law C-L. Abstract 104: Preclinical microPET/CT imaging of 89Zr-Df-SGN-35 in mice bearing xenografted CD30 expressing and non-expressing tumors. Cancer Res. 2014;74:104–109.

    Article  Google Scholar 

  114. Rylova SN, Del Pozzo L, Klingeberg C, et al. Immuno-PET imaging of CD30-positive lymphoma using 89Zr-desferrioxamine-labeled CD30-specific AC-10 antibody. J Nucl Med. 2016;57(1):96–102.

    Article  PubMed  CAS  Google Scholar 

  115. Chamarthy MR, Williams SC, Moadel RM. Radioimmunotherapy of non-Hodgkin’s lymphoma: from the ‘magic bullets’ to ‘radioactive magic bullets’. Yale J Biol Med. 2011;84(4):391–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Iagaru A, Gambhir SS, Goris ML. 90Y-ibritumomab therapy in refractory non-Hodgkin's lymphoma: observations from 111In-ibritumomab pretreatment imaging. J Nucl Med. 2008;49(11):1809–1812.

  117. Perk LR, Visser OJ, Stigter-van Walsum M, et al. Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33(11):1337–1345.

    Article  CAS  PubMed  Google Scholar 

  118. Rizvi SN, Visser OJ, Vosjan MJ, et al. Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin’s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur J Nucl Med Mol Imaging. 2012;39(3):512–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Muylle K, Flamen P, Vugts DJ, et al. Tumour targeting and radiation dose of radioimmunotherapy with (90)Y-rituximab in CD20+ B-cell lymphoma as predicted by (89)Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab. Eur J Nucl Med Mol Imaging. 2015;42(8):1304–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15(6):347–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. DeNardo GL. Treatment of non-Hodgkin’s lymphoma (NHL) with radiolabeled antibodies (mAbs). Semin Nucl Med. 2005;35(3):202–211.

    Article  PubMed  Google Scholar 

  122. Davies AJ. Radioimmunotherapy for B-cell lymphoma: Y90 ibritumomab tiuxetan and I131 tositumomab. Oncogene. 2007;26(25):3614–3628.

    Article  CAS  PubMed  Google Scholar 

  123. Press OW, Unger JM, Rimsza LM, et al. Phase III randomized intergroup trial of CHOP plus rituximab compared with CHOP chemotherapy plus (131)iodine-tositumomab for previously untreated follicular non-Hodgkin lymphoma: SWOG S0016. J Clin Oncol. 2013;31(3):314–320.

    Article  CAS  PubMed  Google Scholar 

  124. Jovanovic D, Djurdjevic P, Andjelkovic N, Zivic L. Possible role of CD22, CD79b and CD20 expression in distinguishing small lymphocytic lymphoma from chronic lymphocytic leukemia. Contemp Oncol (Pozn). 2014;18(1):29–33.

    Google Scholar 

  125. Witzig TE, Tomblyn MB, Misleh JG, et al. Anti-CD22 90Y-epratuzumab tetraxetan combined with anti-CD20 veltuzumab: a phase I study in patients with relapsed/refractory, aggressive non-Hodgkin lymphoma. Haematologica. 2014;99(11):1738–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bodet-Milin C, Kraeber-Bodere F, Dupas B, et al. Evaluation of response to fractionated radioimmunotherapy with 90Y-epratuzumab in non-Hodgkin’s lymphoma by 18F-fluorodeoxyglucose positron emission tomography. Haematologica. 2008;93(3):390–397.

    Article  PubMed  Google Scholar 

  127. DeNardo SJ, DeNardo GL, O’Grady LF, et al. Treatment of a patient with B cell lymphoma by I-131 LYM-1 monoclonal antibodies. Int J Biol Markers. 1987;2(1):49–53.

    CAS  PubMed  Google Scholar 

  128. DeNardo GL, DeNardo SJ, Goldstein DS, et al. Maximum-tolerated dose, toxicity, and efficacy of I-131-Lym-1 antibody for fractionated radioimmunotherapy of non-Hodgkin’s lymphoma. J Clin Oncol. 1998;16(10):3246–3256.

    CAS  PubMed  Google Scholar 

  129. Pagel JM, Pantelias A, Hedin N, et al. Evaluation of CD20, CD22, and HLA-DR targeting for radioimmunotherapy of B-cell lymphomas. Cancer Res. 2007;67(12):5921–5928.

    Article  CAS  PubMed  Google Scholar 

  130. Czuczman MS, Straus DJ, Divgi CR, et al. Phase I dose-escalation trial of iodine 131-labeled monoclonal antibody OKB7 in patients with non-Hodgkin’s lymphoma. J Clin Oncol. 1993;11(10):2021–2029.

    CAS  PubMed  Google Scholar 

  131. Scheinberg DA, Straus DJ, Yeh SD, et al. A phase I toxicity, pharmacology, and dosimetry trial of monoclonal antibody OKB7 in patients with non-Hodgkin’s lymphoma: effects of tumor burden and antigen expression. J Clin Oncol. 1990;8(5):792–803.

    CAS  PubMed  Google Scholar 

  132. Press OW, Eary JF, Badger CC, et al. Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol. 1989;7(8):1027–1038.

    CAS  PubMed  Google Scholar 

  133. Kaminski MS, Fig LM, Zasadny KR, et al. Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. J Clin Oncol. 1992;10(11):1696–1711.

    CAS  PubMed  Google Scholar 

  134. DeNardo GL, Natarajan A, Hok S, et al. Pharmacokinetic characterization in xenografted mice of a series of first-generation mimics for HLA-DR antibody, Lym-1, as carrier molecules to image and treat lymphoma. J Nucl Med. 2007;48(8):1338–1347.

    Article  CAS  PubMed  Google Scholar 

  135. Juweid ME. Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma: from clinical trials to clinical practice. J Nucl Med. 2002;43(11):1507–1529.

    CAS  PubMed  Google Scholar 

  136. Reagan PM, Friedberg JW. Advancing radioimmunotherapy and its future role in non-Hodgkin lymphoma. Future Oncol. 2015;11(10):1543–1553.

    Article  CAS  PubMed  Google Scholar 

  137. Bodet-Milin C, Ferrer L, Pallardy A, et al. Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma. Front Oncol. 2013;3:177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Attanoos R. Lymphoproliferative conditions of the serosa. Arch Pathol Lab Med. 2012;136(3):268–276.

    Article  PubMed  Google Scholar 

  139. Griffeth LK. Use of PET/CT scanning in cancer patients: technical and practical considerations. Proc (Bayl Univ Med Cent). 2005;18(4):321–330.

    Google Scholar 

  140. Yang ZZ, Grote DM, Ziesmer SC, Xiu B, Novak AJ, Ansell SM. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J. 2015;5, e281.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Xerri L, Devilard E, Hassoun J, Olive D, Birg F. In vivo expression of the CTLA4 inhibitory receptor in malignant and reactive cells from human lymphomas. J Pathol. 1997;183(2):182–187.

    Article  CAS  PubMed  Google Scholar 

  142. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–319.

    Article  PubMed  CAS  Google Scholar 

  143. England CG, Ehlerding EB, Hernandez R, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2016. doi:10.2967/jnumed.116.177857.

    Google Scholar 

  144. Ehlerding EB, England CG, McNeel DG, Cai W. Molecular imaging of immunotherapy targets in cancer. J Nucl Med. 2016;57(10):1487–1492.

    Article  PubMed  Google Scholar 

  145. Natarajan A, Hackel BJ, Gambhir SS. A novel engineered anti-CD20 tracer enables early time PET imaging in a humanized transgenic mouse model of B-cell non-Hodgkins lymphoma. Clin Cancer Res. 2013;19(24):6820–6829.

    Article  CAS  PubMed  Google Scholar 

  146. Tzankov A, Leu N, Muenst S, et al. Multiparameter analysis of homogeneously R-CHOP-treated diffuse large B cell lymphomas identifies CD5 and FOXP1 as relevant prognostic biomarkers: report of the prospective SAKK 38/07 study. J Hematol Oncol. 2015;8:70–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Chuang WY, Chang H, Shih LY, et al. CD5 positivity is an independent adverse prognostic factor in elderly patients with diffuse large B cell lymphoma. Virchows Arch. 2015;467(5):571–582.

    Article  CAS  PubMed  Google Scholar 

  148. Khandani AH, Dunphy CH, Meteesatien P, Dufault DL, Ivanovic M, Shea TC. Glut1 and Glut3 expression in lymphoma and their association with tumor intensity on 18F-fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 2009;30(8):594–601.

    Article  CAS  PubMed  Google Scholar 

  149. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher G. England or Weibo Cai.

Ethics declarations

Funding

This work was funded, in part, by the University of Wisconsin–Madison, the National Institutes of Health (NIBIB/NCI 1R01CA169365, 1R01EB021336, P30CA014520, T32CA009206), and the American Cancer Society (125246-RSG-13-099-01-CCE).

Conflicts of interest

None.

Ethical approval

This article does not describe any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

England, C.G., Rui, L. & Cai, W. Lymphoma: current status of clinical and preclinical imaging with radiolabeled antibodies. Eur J Nucl Med Mol Imaging 44, 517–532 (2017). https://doi.org/10.1007/s00259-016-3560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3560-9

Keywords

Navigation