Skip to main content

Advertisement

Log in

Increased arterial inflammation in individuals with stage 3 chronic kidney disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

While it is well known that patients with chronic kidney disease (CKD) are at increased risk for the development and progression of atherosclerosis, it is not known whether arterial inflammation is increased in mild CKD. The aim of this study was to compare arterial inflammation using 18F-FDG PET/CT in patients with CKD and in matched controls.

Methods

This restrospective study included 128 patients undergoing FDG PET/CT imaging for clinical indications, comprising 64 patients with stage 3 CKD and 64 control patients matched by age, gender, and cancer history. CKD was defined according to guidelines using a calculated glomerular filtration rate (eGFR). Arterial inflammation was measured in the ascending aorta as FDG uptake on PET. Background FDG uptake (venous, subcutaneous fat and muscle) were recorded. Coronary artery calcification (CAC) was assessed using the CT images. The impact of CKD on arterial inflammation and CAC was then assessed.

Results

Arterial inflammation was higher in patients with CKD than in matched controls (standardized uptake value, SUV: 2.41 ± 0.49 vs. 2.16 ± 0.43; p = 0.002). Arterial SUV correlated inversely with eGFR (r = −0.299, p = 0.001). Venous SUV was also significantly elevated in patients with CKD, while subcutaneous fat and muscle tissue SUVs did not differ between groups. Moreover, arterial SUV remained significantly elevated in patients with CKD compared to controls after correcting for muscle and fat background, and also remained significant after adjusting for clinical risk factors. Further, CKD was associated with arterial inflammation (SUV) independent of the presence of subclinical atherosclerosis (CAC).

Conclusion

Moderate CKD is associated with increased arterial inflammation beyond that of controls. Further, the increased arterial inflammation is independent of presence of subclinical atherosclerosis. Current risk stratification tools may underestimate the presence of atherosclerosis in patients with CKD and thereby the risk of cardiovascular events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoerger TJ, Simpson SA, Yarnoff BO, Pavkov ME, Rios Burrows N, Saydah SH, et al. The future burden of CKD in the United States: a simulation model for the CDC CKD initiative. Am J Kidney Dis. 2015;65:403–11. doi:10.1053/j.ajkd.2014.09.023.

    Article  PubMed  Google Scholar 

  2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305. doi:10.1056/NEJMoa041031.

    Article  PubMed  CAS  Google Scholar 

  3. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116:85–97. doi:10.1161/CIRCULATIONAHA.106.678342.

    Article  PubMed  Google Scholar 

  4. Shlipak MG, Fried LF, Cushman M, Manolio TA, Peterson D, Stehman-Breen C, et al. Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA. 2005;293:1737–45. doi:10.1001/jama.293.14.1737.

    Article  PubMed  CAS  Google Scholar 

  5. Kiu Weber CI, Duchateau-Nguyen G, Solier C, Schell-Steven A, Hermosilla R, Nogoceke E, et al. Cardiovascular risk markers associated with arterial calcification in patients with chronic kidney disease stages 3 and 4. Clin Kidney J. 2014;7:167–73. doi:10.1093/ckj/sfu017.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Rennen HJ, Boerman OC, Oyen WJ, Corstens FH. Imaging infection/inflammation in the new millennium. Eur J Nucl Med. 2001;28:241–52.

    Article  PubMed  CAS  Google Scholar 

  7. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48:1818–24. doi:10.1016/j.jacc.2006.05.076.

    Article  PubMed  Google Scholar 

  8. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.

    Article  PubMed  CAS  Google Scholar 

  9. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49:871–8. doi:10.2967/jnumed.107.050294.

    Article  PubMed  Google Scholar 

  10. Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6:1250–9. doi:10.1016/j.jcmg.2013.08.006.

    Article  PubMed  Google Scholar 

  11. Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50:892–6. doi:10.1016/j.jacc.2007.05.024.

    Article  PubMed  Google Scholar 

  12. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48:1825–31. doi:10.1016/j.jacc.2006.03.069.

    Article  PubMed  CAS  Google Scholar 

  13. Wu YW, Kao HL, Huang CL, Chen MF, Lin LY, Wang YC, et al. The effects of 3-month atorvastatin therapy on arterial inflammation, calcification, abdominal adipose tissue and circulating biomarkers. Eur J Nucl Med Mol Imaging. 2012;39:399–407. doi:10.1007/s00259-011-1994-7.

    Article  PubMed  CAS  Google Scholar 

  14. Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging. 2010;3:388–97. doi:10.1016/j.jcmg.2010.01.004.

    Article  PubMed  Google Scholar 

  15. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20. doi:10.2967/jnumed.109.065151.

    Article  PubMed  Google Scholar 

  16. Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol. 2008;15:209–17. doi:10.1016/j.nuclcard.2007.10.009.

    Article  PubMed  Google Scholar 

  17. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro 3rd AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tawakol A, Fayad ZA, Mogg R, Alon A, Klimas MT, Dansky H, et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J Am Coll Cardiol. 2013;62:909–17. doi:10.1016/j.jacc.2013.04.066.

    Article  PubMed  CAS  Google Scholar 

  19. Blomberg BA, Thomassen A, de Jong PA, Simonsen J, Lam M, Nielsen A, et al. Impact of personal characteristics and technical factors on quantification of sodium 18F-fluoride uptake in human arteries: prospective evaluation of healthy subjects. J Nucl Med. 2015;56:1534–40. doi:10.2967/jnumed.115.159798.

    Article  PubMed  Google Scholar 

  20. Kirsch J, Buitrago I, Mohammed TL, Gao T, Asher CR, Novaro GM. Detection of coronary calcium during standard chest computed tomography correlates with multi-detector computed tomography coronary artery calcium score. Int J Cardiovasc Imaging. 2012;28:1249–56. doi:10.1007/s10554-011-9928-9.

    Article  PubMed  Google Scholar 

  21. Einstein AJ, Johnson LL, Bokhari S, Son J, Thompson RC, Bateman TM, et al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol. 2010;56:1914–21. doi:10.1016/j.jacc.2010.05.057.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Raggi P, Boulay A, Chasan-Taber S, Amin N, Dillon M, Burke SK, et al. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol. 2002;39:695–701.

    Article  PubMed  Google Scholar 

  23. McCullough PA, Sandberg KR, Dumler F, Yanez JE. Determinants of coronary vascular calcification in patients with chronic kidney disease and end-stage renal disease: a systematic review. J Nephrol. 2004;17:205–15.

    PubMed  Google Scholar 

  24. Moe SM, Chen NX. Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2008;19:213–6. doi:10.1681/ASN.2007080854.

    Article  PubMed  CAS  Google Scholar 

  25. Haydar AA, Hujairi NM, Covic AA, Pereira D, Rubens M, Goldsmith DJ. Coronary artery calcification is related to coronary atherosclerosis in chronic renal disease patients: a study comparing EBCT-generated coronary artery calcium scores and coronary angiography. Nephrol Dial Transplant. 2004;19:2307–12. doi:10.1093/ndt/gfh120.

    Article  PubMed  Google Scholar 

  26. Hoh CK. Clinical use of FDG PET. Nucl Med Biol. 2007;34:737–42. doi:10.1016/j.nucmedbio.2007.07.001.

    Article  PubMed  CAS  Google Scholar 

  27. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med: Off Publ Soc Nucl Med. 1978;19:1154–61.

    CAS  Google Scholar 

  28. Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24:382–91.

    Article  PubMed  CAS  Google Scholar 

  29. Laffon E, Cazeau AL, Monet A, de Clermont H, Fernandez P, Marthan R, et al. The effect of renal failure on 18F-FDG uptake: a theoretic assessment. J Nucl Med Technol. 2008;36:200–2. doi:10.2967/jnmt.107.049627.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Tawakol.

Ethics declarations

Funding

F. Hoffmann-La Roche Ltd., Switzerland

Conflicts of interest

Jessica Mann, Robert A. Comley and Chek Ing Kiu Weber were employed by, and owned stock F. Hoffmann-La Roche Ltd., Basel, Switzerland, at the time of the study.

All other authors have no relationships relevant to the contents of this article to disclose.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional and national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Infomed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takx, R.A.P., MacNabb, M.H., Emami, H. et al. Increased arterial inflammation in individuals with stage 3 chronic kidney disease. Eur J Nucl Med Mol Imaging 43, 333–339 (2016). https://doi.org/10.1007/s00259-015-3203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3203-6

Keywords

Navigation