Skip to main content
Log in

High FDG uptake areas on pre-radiotherapy PET/CT identify preferential sites of local relapse after chemoradiotherapy for locally advanced oesophageal cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The high failure rates in the radiotherapy (RT) target volume suggest that patients with locally advanced oesophageal cancer (LAOC) would benefit from increased total RT doses. High 2-deoxy-2-[18F]fluoro-D-glucose (FDG) uptake (hotspot) on pre-RT FDG positron emission tomography (PET)/CT has been reported to identify intra-tumour sites at increased risk of relapse after RT in non-small cell lung cancer and in rectal cancer. Our aim was to confirm these observations in patients with LAOC and to determine the optimal maximum standardized uptake value (SUVmax) threshold to delineate smaller RT target volumes that would facilitate RT dose escalation without impaired tolerance.

Methods

The study included 98 consecutive patients with LAOC treated by chemoradiotherapy (CRT). All patients underwent FDG PET/CT at initial staging and during systematic follow-up in a single institution. FDG PET/CT acquisitions were coregistered on the initial CT scan. Various subvolumes within the initial tumour (30, 40, 50, 60, 70, 80 and 90 % SUVmax thresholds) and in the subsequent local recurrence (LR, 40 and 90 % SUVmax thresholds) were pasted on the initial CT scan and compared[Dice, Jaccard, overlap fraction (OF), common volume/baseline volume, common volume/recurrent volume].

Results

Thirty-five patients had LR. The initial metabolic tumour volume was significantly higher in LR tumours than in the locally controlled tumours (mean 25.4 vs 14.2 cc; p = 0.002). The subvolumes delineated on initial PET/CT with a 30–60 % SUVmax threshold were in good agreement with the recurrent volume at 40 % SUVmax (OF = 0.60–0.80). The subvolumes delineated on initial PET/CT with a 30–60 % SUVmax threshold were in good to excellent agreement with the core volume (90 % SUVmax) of the relapse (common volume/recurrent volume and OF indices 0.61–0.89).

Conclusion

High FDG uptake on pretreatment PET/CT identifies tumour subvolumes that are at greater risk of recurrence after CRT in patients with LAOC. We propose a 60 % SUVmax threshold to delineate high FDG uptake areas on initial PET/CT as reduced target volumes for RT dose escalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet 2013;381:400–12.

    Article  PubMed  Google Scholar 

  2. Pöttgen C, Stuschke M. Radiotherapy versus surgery within multimodality protocols for esophageal cancer–a meta-analysis of the randomized trials. Cancer Treat Rev 2012;38:599–604.

    Article  PubMed  Google Scholar 

  3. Bedenne L, Michel P, Bouché O, Milan C, Mariette C, Conroy T, et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J Clin Oncol 2007;25:1160–8.

    Article  CAS  PubMed  Google Scholar 

  4. Herskovic A, Russell W, Liptay M, Fidler MJ, Al-Sarraf M. Esophageal carcinoma advances in treatment results for locally advanced disease: review. Ann Oncol 2012;23:1095–103.

    Article  CAS  PubMed  Google Scholar 

  5. Minsky BD, Pajak TF, Ginsberg RJ, Pisansky TM, Martenson J, Komaki R, et al. INT 0123 (Radiation Therapy Oncology Group 94–05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol 2002;20:1167–74.

    Article  CAS  PubMed  Google Scholar 

  6. Michel P, Adenis A, Di Fiore F, Boucher E, Galais MP, Dahan L, et al. Induction cisplatin–irinotecan followed by concurrent cisplatin–irinotecan and radiotherapy without surgery in oesophageal cancer: multicenter phase II FFCD trial. Br J Cancer 2006;95:705–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Welsh J, Settle SH, Amini A, Xiao L, Suzuki A, Hayashi Y, et al. Failure patterns in patients with esophageal cancer treated with definitive chemoradiation. Cancer 2012;118:2632–40.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Welsh J, Palmer MB, Ajani JA, Liao Z, Swisher SG, Hofstetter WL, et al. Esophageal cancer dose escalation using a simultaneous integrated boost technique. Int J Radiat Oncol Biol Phys 2012;82:468–74.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Chandra A, Guerrero TM, Liu HH, Tucker SL, Liao Z, Wang X, et al. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiother Oncol 2005;77:247–53.

    Article  PubMed  Google Scholar 

  10. Fu W-H, Wang L-H, Zhou Z-M, Dai J-R, Hu Y-M, Zhao L-J. Comparison of conformal and intensity-modulated techniques for simultaneous integrated boost radiotherapy of upper esophageal carcinoma. World J Gastroenterol 2004;10:1098–102.

    PubMed  Google Scholar 

  11. Kole TP, Aghayere O, Kwah J, Yorke ED, Goodman KA. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer. Int J Radiat Oncol Biol Phys 2012;83:1580–6.

    Article  PubMed  Google Scholar 

  12. Martin S, Chen JZ, Rashid Dar A, Yartsev S. Dosimetric comparison of helical tomotherapy, RapidArc, and a novel IMRT & Arc technique for esophageal carcinoma. Radiother Oncol 2011;101:431–7.

    Article  PubMed  Google Scholar 

  13. Wu VWC, Sham JST, Kwong DLW. Inverse planning in three-dimensional conformal and intensity-modulated radiotherapy of mid-thoracic oesophageal cancer. Br J Radiol 2004;77:568–72.

    Article  CAS  PubMed  Google Scholar 

  14. Welsh J, Gomez D, Palmer MB, Riley BA, Mayankkumar AV, Komaki R, et al. Intensity-modulated proton therapy further reduces normal tissue exposure during definitive therapy for locally advanced distal esophageal tumors: a dosimetric study. Int J Radiat Oncol Biol Phys 2011;81:1336–42.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Barber TW, Duong CP, Leong T, Bressel M, Drummond EG, Hicks RJ. 18F-FDG PET/CT has a high impact on patient management and provides powerful prognostic stratification in the primary staging of esophageal cancer: a prospective study with mature survival data. J Nucl Med 2012;53:864–71.

    Article  PubMed  Google Scholar 

  16. Van Westreenen HL, Westerterp M, Bossuyt PMM, Pruim J, Sloof GW, van Lanschot JJB, et al. Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol 2004;22:3805–12.

    Article  PubMed  Google Scholar 

  17. Lambrecht M, Haustermans K. Clinical evidence on PET-CT for radiation therapy planning in gastro-intestinal tumors. Radiother Oncol 2010;96:339–46.

    Article  PubMed  Google Scholar 

  18. Yu W, Fu X-L, Zhang Y-J, Xiang J-Q, Shen L, Jiang G-L, et al. GTV spatial conformity between different delineation methods by 18FDG PET/CT and pathology in esophageal cancer. Radiother Oncol 2009;93:441–6.

    Article  PubMed  Google Scholar 

  19. Aerts HJWL, van Baardwijk AAW, Petit SF, Offermann C, van Loon J, Houben R, et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)fluorodeoxyglucose-PET-CT scan. Radiother Oncol 2009;91:386–92.

    Article  PubMed  Google Scholar 

  20. Aerts HJ, Bussink J, Oyen WJ, van Elmpt W, Folgering AM, Emans D, et al. Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: a prospective validation. Lung Cancer 2012;75:73–6.

    Article  PubMed  Google Scholar 

  21. van den Bogaard J, Janssen MHM, Janssens G, Buijsen J, Reniers B, Lambin P, et al. Residual metabolic tumor activity after chemo-radiotherapy is mainly located in initially high FDG uptake areas in rectal cancer. Radiother Oncol 2011;99:137–41.

    Article  PubMed  Google Scholar 

  22. Herskovic A, Martz K, al-Sarraf M, Leichman L, Brindle J, Vaitkevicius V, et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med 1992;326:1593–8.

    Article  CAS  PubMed  Google Scholar 

  23. Paidpally V, Mercier G, Shah BA, Senthamizhchelvan S, Subramaniam RM. Interreader agreement and variability of FDG PET volumetric parameters in human solid tumors. AJR Am J Roentgenol 2014;202:406–12.

    Article  PubMed  Google Scholar 

  24. Di Fiore F, Blondin V, Hitzel A, Edet-Sanson A, Benyoucef A, Huet E, et al. 18F-fluorodeoxyglucose positron emission tomography after definitive chemoradiotherapy in patients with oesophageal carcinoma. Dig Liver Dis 2012;44:875–9.

    Article  PubMed  Google Scholar 

  25. Palie O, Michel P, Ménard J-F, Rousseau C, Rio E, Bridji B, et al. The predictive value of treatment response using FDG PET performed on day 21 of chemoradiotherapy in patients with oesophageal squamous cell carcinoma. A prospective, multicentre study (RTEP3). Eur J Nucl Med Mol Imaging 2013;40:1345–55.

    Article  CAS  PubMed  Google Scholar 

  26. Lemarignier C, Di Fiore F, Marre C, Hapdey S, Modzelewski R, Gouel P, et al. Pretreatment metabolic tumour volume is predictive of disease-free survival and overall survival in patients with oesophageal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 2014;41:2008–16. doi:10.1007/s00259-014-2839-y.

    Article  CAS  PubMed  Google Scholar 

  27. Ourselin S, Roche A, Prima S, Ayache N. Block matching: a general framework to improve robustness of rigid registration of medical images. In: Delp SL, DiGoia AM, Jaramaz B, editors. MICCAI 2000 [Internet]. Heidelberg: Springer; 2000. p. 557–66. Available via http://link.springer.com/chapter/10.1007/978-3-540-40899-4_57. Accessed 2 Aug 2014.

  28. Hanna GG, Hounsell AR, O’Sullivan JM. Geometrical analysis of radiotherapy target volume delineation: a systematic review of reported comparison methods. Clin Oncol (R Coll Radiol) 2010;22:515–25.

    Article  CAS  Google Scholar 

  29. Thureau S, Chaumet-Riffaud P, Modzelewski R, Fernandez P, Tessonnier L, Vervueren L, et al. Interobserver agreement of qualitative analysis and tumor delineation of 18F-fluoromisonidazole and 3′-deoxy-3′-18F-fluorothymidine PET images in lung cancer. J Nucl Med 2013;54:1543–50.

    Article  CAS  PubMed  Google Scholar 

  30. Lu W, Tan S, Kim G, Feigenberg S, Zhang H, Kligerman S, et al. Pre-chemoradiation therapy FDG PET/CT cannot identify residual metabolically active areas in patients with locally advanced esophageal cancer. Int J Radiat Oncol Biol Phys 2012;84:S312.

    Article  Google Scholar 

  31. Hatt M, Visvikis D, Pradier O, Cheze-le Rest C. Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur J Nucl Med Mol Imaging 2011;38:1595–606.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol 2010;17:115–22.

    Article  PubMed  Google Scholar 

  33. Shukovsky LJ, Fletcher GH. Time-dose and tumor volume relationships in the irradiation of squamous cell carcinoma of the tonsillar fossa. Radiology 1973;107:621–6.

    Article  CAS  PubMed  Google Scholar 

  34. Nkhali L, Thureau S, Edet-Sanson A, Doyeux K, Benyoucef A, Gardin I, et al. FDG-PET/CT during concomitant chemo radiotherapy for esophageal cancer: reducing target volumes to deliver higher radiotherapy doses. Acta Oncol 2014;1–7.

  35. Vera P, Dubray B, Palie O, Buvat I, Hapdey S, Modzelewski R, et al. Monitoring tumour response during chemo-radiotherapy: a parametric method using FDG-PET/CT images in patients with oesophageal cancer. EJNMMI Res 2014;4:12.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Necib H, Garcia C, Wagner A, Vanderlinden B, Emonts P, Hendlisz A, et al. Detection and characterization of tumor changes in 18F-FDG PET patient monitoring using parametric imaging. J Nucl Med 2011;52:354–61.

    Article  PubMed  Google Scholar 

  37. Hawkins MA, Aitken A, Hansen VN, McNair HA, Tait DM. Cone beam CT verification for oesophageal cancer – impact of volume selected for image registration. Acta Oncol 2011;50:1183–90.

    Article  PubMed  Google Scholar 

  38. Menzel C, Döbert N, Rieker O, Kneist W, Mose S, Teising A, et al. 18F-Deoxyglucose PET for the staging of oesophageal cancer: influence of histopathological subtype and tumour grading. Nuklearmedizin 2003;42:90–3.

    PubMed  Google Scholar 

  39. Mees G, Dierckx R, Vangestel C, Laukens D, Van Damme N, Van de Wiele C. Pharmacologic activation of tumor hypoxia: a means to increase tumor 2-deoxy-2-[18F]fluoro-D-glucose uptake? Mol Imaging 2013;12:49–58.

    CAS  PubMed  Google Scholar 

  40. Van Baardwijk A, Dooms C, van Suylen RJ, Verbeken E, Hochstenbag M, Dehing-Oberije C, et al. The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1α and GLUT-1 in non-small cell lung cancer. Eur J Cancer 2007;43:1392–8.

    Article  PubMed  Google Scholar 

  41. Huang T, Civelek AC, Li J, Jiang H, Ng CK, Postel GC, et al. Tumor microenvironment-dependent 18F-FDG, 18F-fluorothymidine, and 18F-misonidazole uptake: a pilot study in mouse models of human non-small cell lung cancer. J Nucl Med 2012;53:1262–8.

    Article  CAS  PubMed  Google Scholar 

  42. Wijsman R, Kaanders JH, Oyen WJ, Bussink J. Hypoxia and tumor metabolism in radiation oncology: targets visualized by positron emission tomography. Q J Nucl Med Mol Imaging 2013;57:244–56.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the “Ligue contre le cancer de Haute Normandie” and The North Ouest Canceropole (National Cancer Institute, INCa). We are grateful to Mr. Sebastien Vauclin from Dosisoft for his excellent collaboration

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Vera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calais, J., Dubray, B., Nkhali, L. et al. High FDG uptake areas on pre-radiotherapy PET/CT identify preferential sites of local relapse after chemoradiotherapy for locally advanced oesophageal cancer. Eur J Nucl Med Mol Imaging 42, 858–867 (2015). https://doi.org/10.1007/s00259-015-3004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3004-y

Keywords

Navigation