Skip to main content

Advertisement

Log in

Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

(C+C)/C:

Creatine and choline over citrate

GS:

Gleason score

HRMAS:

High-resolution magic angle spinning

M+SD:

Median plus standard deviation

Mip :

Malignancy index

MALDI:

Matrix-assisted laser desorption ionization

MRS:

Magnetic resonance spectroscopy

MRSI:

Magnetic resonance spectroscopy imaging

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

PCa:

Prostate cancer

PSA:

Prostate-specific antigen

SNR:

Signal-to-noise ratio

T:

Tesla

References

  1. National Cancer Institute. Defeating prostate cancer: crucial directions for research, report of the prostate cancer progress review group. Bethesda, MD: National Cancer Institute; 1998.

    Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  3. Andriole GL, Crawford ED, Grubb 3rd RL, Buys SS, Chia D, Church TR, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 2009;360:1310–9.

    Article  PubMed  CAS  Google Scholar 

  4. Welch HG, Albertsen PC. Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J Natl Cancer Inst. 2009;101:1325–9.

    Article  PubMed  Google Scholar 

  5. Brawer MK. Prostate-specific antigen: current status. CA Cancer J Clin. 1999;49:264–81.

    Article  PubMed  CAS  Google Scholar 

  6. Brawer MK. Prostate-specific antigen. Semin Surg Oncol. 2000;18:3–9.

    Article  PubMed  CAS  Google Scholar 

  7. Loeb S, Catalona WJ. Prostate-specific antigen screening: pro. Curr Opin Urol. 2010;20:185–8.

    Article  PubMed  Google Scholar 

  8. Andriole GL, Crawford ED, Grubb 3rd RL, Buys SS, Chia D, Church TR, et al. Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer screening trial: mortality results after 13 years of follow-up. J Natl Cancer Inst. 2011;104:125–32.

    Article  Google Scholar 

  9. Payne H, Cornford P. Prostate-specific antigen: an evolving role in diagnosis, monitoring, and treatment evaluation in prostate cancer. Urol Oncol. 2010;29:593–601.

    PubMed  Google Scholar 

  10. Loeb S, Roehl KA, Helfand BT, Kan D, Catalona WJ. Can prostate specific antigen velocity thresholds decrease insignificant prostate cancer detection? J Urol. 2010;183:112–6.

    Article  PubMed  CAS  Google Scholar 

  11. Klotz L. Active surveillance for prostate cancer: a review. Curr Urol Rep. 2010;11:165–71.

    Article  PubMed  Google Scholar 

  12. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360:1320–8.

    Article  PubMed  Google Scholar 

  13. Cheng LL, Pohl U. The role of NMR-based metabolomics in cancer. In: Lindon JC, Nicholls JK, Holmes E, editors. The handbook of metabonomics and metabolomics. Amsterdam: Elsevier; 2007. p. 345–74.

    Google Scholar 

  14. Trock BJ. Application of metabolomics to prostate cancer. Urol Oncol. 2011;29:572–81.

    Article  PubMed  CAS  Google Scholar 

  15. Lodi A, Ronen SM. Magnetic resonance spectroscopy detectable metabolomic fingerprint of response to antineoplastic treatment. PLoS One. 2011;6:e26155.

    Article  PubMed  CAS  Google Scholar 

  16. Teahan O, Bevan CL, Waxman J, Keun HC. Metabolic signatures of malignant progression in prostate epithelial cells. Int J Biochem Cell Biol. 2011;43:1002–9.

    Article  PubMed  CAS  Google Scholar 

  17. Teichert F, Verschoyle RD, Greaves P, Edwards RE, Teahan O, Jones DJ, et al. Metabolic profiling of transgenic adenocarcinoma of mouse prostate (TRAMP) tissue by 1H-NMR analysis: evidence for unusual phospholipid metabolism. Prostate. 2008;68:1035–47.

    Article  PubMed  CAS  Google Scholar 

  18. Raina K, Ravichandran K, Rajamanickam S, Huber KM, Serkova NJ, Agarwal R. Inositol hexaphosphate inhibits tumor growth, vascularity, and metabolism in TRAMP mice: a multiparametric magnetic resonance study. Cancer Prev Res (Phila). 2013;6:40–50.

    Article  CAS  Google Scholar 

  19. Chaurand P, Rahman MA, Hunt T, Mobley JA, Gu G, Latham JC, et al. Monitoring mouse prostate development by profiling and imaging mass spectrometry. Mol Cell Proteomics. 2008;7:411–23.

    PubMed  CAS  Google Scholar 

  20. Wu H, Liu T, Ma C, Xue R, Deng C, Zeng H, et al. GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal Bioanal Chem. 2011;401:635–46.

    Article  PubMed  CAS  Google Scholar 

  21. Saylor PJ, Karoly ED, Smith MR. Prospective study of changes in the metabolomic profiles of men during their first three months of androgen deprivation therapy for prostate cancer. Clin Cancer Res. 2012;18:3677–85.

    Article  PubMed  CAS  Google Scholar 

  22. Fan Y, Murphy TB, Byrne JC, Brennan L, Fitzpatrick JM, Watson RW. Applying random forests to identify biomarker panels in serum 2D-DIGE data for the detection and staging of prostate cancer. J Proteome Res. 2011;10:1361–73.

    Article  PubMed  CAS  Google Scholar 

  23. Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One. 2011;6:e24143.

    Article  PubMed  CAS  Google Scholar 

  24. Cheng LL, Lean CL, Bogdanova A, Wright Jr SC, Ackerman JL, Brady TJ, et al. Enhanced resolution of proton NMR spectra of malignant lymph nodes using magic-angle spinning. Magn Reson Med. 1996;36:653–8.

    Article  PubMed  CAS  Google Scholar 

  25. Cheng LL, Ma MJ, Becerra L, Ptak T, Tracey I, Lackner A, et al. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 1997;94:6408–13.

    Article  PubMed  CAS  Google Scholar 

  26. Cheng LL, Chang IW, Louis DN, Gonzalez RG. Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Res. 1998;58:1825–32.

    PubMed  CAS  Google Scholar 

  27. Burns MA, He W, Wu CL, Cheng LL. Quantitative pathology in tissue MR spectroscopy based human prostate metabolomics. Technol Cancer Res Treat. 2004;3:591–8.

    PubMed  Google Scholar 

  28. Smith R, Litwin M, Lu Y, Zetter B. Identification of an endogenous inhibitor of prostate carcinoma cell growth. Nat Med. 1995;1:1040–5.

    Article  PubMed  CAS  Google Scholar 

  29. Franklin RB, Feng P, Milon B, Desouki MM, Singh KK, Kajdacsy-Balla A, et al. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer. 2005;4:32.

    Article  PubMed  Google Scholar 

  30. Dittrich R, Kurth J, Decelle EA, Defeo EM, Taupitz M, Wu S, et al. Assessing prostate cancer growth with citrate measured by intact tissue proton magnetic resonance spectroscopy. Prostate Cancer Prostatic Dis. 2012;15:278–82.

    Article  PubMed  CAS  Google Scholar 

  31. Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, et al. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med. 2006;55:1257–64.

    Article  PubMed  CAS  Google Scholar 

  32. Swanson MG, Keshari KR, Tabatabai ZL, Simko JP, Shinohara K, Carroll PR, et al. Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn Reson Med. 2008;60:33–40.

    Article  PubMed  CAS  Google Scholar 

  33. Swanson MG, Vigneron DB, Tabatabai ZL, Males RG, Schmitt L, Carroll PR, et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med. 2003;50:944–54.

    Article  PubMed  CAS  Google Scholar 

  34. Cheng LL, Burns MA, Taylor JL, He W, Halpern EF, McDougal WS, et al. Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Res. 2005;65:3030–4.

    PubMed  CAS  Google Scholar 

  35. Wu CL, Jordan KW, Ratai EM, Shen J, Adkins CB, DeFeo EM, et al. Metabolomic imaging for human prostate cancer detection. Sci Transl Med. 2010;2:16ra8.

    Article  PubMed  Google Scholar 

  36. Maxeiner A, Adkins CB, Zhang Y, Taupitz M, Halpern EF, McDougal WS, et al. Retrospective analysis of prostate cancer recurrence potential with tissue metabolomic profiles. Prostate. 2010;70:710–7.

    PubMed  Google Scholar 

  37. Burns MA, Taylor JL, Wu CL, Zepeda AG, Bielecki A, Cory D, et al. Reduction of spinning sidebands in proton NMR of human prostate tissue with slow high-resolution magic angle spinning. Magn Reson Med. 2005;54:34–42.

    Article  PubMed  CAS  Google Scholar 

  38. Taylor JL, Wu CL, Cory D, Gonzalez RG, Bielecki A, Cheng LL. High-resolution magic angle spinning proton NMR analysis of human prostate tissue with slow spinning rates. Magn Reson Med. 2003;50:627–32.

    Article  PubMed  Google Scholar 

  39. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4.

    Article  PubMed  CAS  Google Scholar 

  40. Shuster JR, Lance RS, Troyer DA. Molecular preservation by extraction and fixation, mPREF: a method for small molecule biomarker analysis and histology on exactly the same tissue. BMC Clin Pathol. 2011;11:14.

    Article  PubMed  Google Scholar 

  41. Nagarajan R, Margolis D, Raman S, Sarma MK, Sheng K, King CR, et al. MR spectroscopic imaging and diffusion-weighted imaging of prostate cancer with Gleason scores. J Magn Reson Imaging. 2012;36:697–703.

    Article  PubMed  Google Scholar 

  42. Kurhanewicz J, Vigneron DB. Advances in MR spectroscopy of the prostate. Magn Reson Imaging Clin N Am. 2008;16:697–710, ix–x.

    Article  PubMed  Google Scholar 

  43. Yakar D, Heijmink SW, de Kaa CA H, Huisman H, Barentsz JO, Futterer JJ, et al. Initial results of 3-dimensional 1H-magnetic resonance spectroscopic imaging in the localization of prostate cancer at 3 Tesla: should we use an endorectal coil. Invest Radiol. 2011;46:301–6.

    PubMed  CAS  Google Scholar 

  44. Posse S, Otazo R, Dager SR, Alger J. MR spectroscopic imaging: principles and recent advances. J Magn Reson Imaging. 2012. doi:10.1002/jmri.23945.

  45. Cady EB, Costello AM, Dawson MJ, Delpy DT, Hope PL, Reynolds EO, et al. Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet. 1983;1:1059–62.

    Article  PubMed  CAS  Google Scholar 

  46. Hope PL, Costello AM, Cady EB, Delpy DT, Tofts PS, Chu A, et al. Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet. 1984;2:366–70.

    Article  PubMed  CAS  Google Scholar 

  47. Laprie A, Pirzkall A, Haas-Kogan DA, Cha S, Banerjee A, Le TP, et al. Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62:20–31.

    Article  PubMed  Google Scholar 

  48. Nie K, Zhang Y, Huang B, Wang L, Zhao J, Huang Z, et al. Marked N-acetylaspartate and choline metabolite changes in Parkinson’s disease patients with mild cognitive impairment. Parkinsonism Relat Disord. 2013;19:329–34.

    Article  PubMed  Google Scholar 

  49. Godbolt AK, Waldman AD, MacManus DG, Schott JM, Frost C, Cipolotti L, et al. MRS shows abnormalities before symptoms in familial Alzheimer disease. Neurology. 2006;66:718–22.

    Article  PubMed  CAS  Google Scholar 

  50. Tafazoli S, O’Neill J, Bejjani A, Ly R, Salamon N, McCracken JT, et al. 1H MRSI of middle frontal gyrus in pediatric ADHD. J Psychiatr Res. 2013;47:505–12.

    Article  PubMed  Google Scholar 

  51. Seese RR, O’Neill J, Hudkins M, Siddarth P, Levitt J, Tseng B, et al. Proton magnetic resonance spectroscopy and thought disorder in childhood schizophrenia. Schizophr Res. 2011;133:82–90.

    Article  PubMed  Google Scholar 

  52. Zabala A, Sanchez-Gonzalez J, Parellada M, Moreno DM, Reig S, Burdalo MT, et al. Findings of proton magnetic resonance spectometry in the dorsolateral prefrontal cortex in adolescents with first episodes of psychosis. Psychiatry Res. 2007;156:33–42.

    Article  PubMed  Google Scholar 

  53. Kirov II, Tal A, Babb JS, Lui YW, Grossman RI, Gonen O. Diffuse axonal injury in mild traumatic brain injury: a 3D multivoxel proton MR spectroscopy study. J Neurol. 2013;260:242–52.

    Article  PubMed  Google Scholar 

  54. Munoz Maniega S, Cvoro V, Chappell FM, Armitage PA, Marshall I, Bastin ME, et al. Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study. Neurology. 2008;71:1993–9.

    Article  PubMed  CAS  Google Scholar 

  55. Maudsley AA, Domenig C, Ramsay RE, Bowen BC. Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res. 2010;88:127–38.

    Article  PubMed  Google Scholar 

  56. Kurhanewicz J, Swanson M, Nelson S, Vigneron D. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging. 2002;16(4):451–463.

    Google Scholar 

  57. Kurhanewicz J, Vigneron D, Hricak H, Narayan P, Carroll P, Nelson S. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology. 1996;198:795–805.

    PubMed  CAS  Google Scholar 

  58. Scheidler J, Hricak H, Vigneron DB, Yu KK, Sokolov DL, Huang LR, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging – clinicopathologic study. Radiology. 1999;213:473–80.

    PubMed  CAS  Google Scholar 

  59. Yuen JS, Thng CH, Tan PH, Khin LW, Phee SJ, Xiao D, et al. Endorectal magnetic resonance imaging and spectroscopy for the detection of tumor foci in men with prior negative transrectal ultrasound prostate biopsy. J Urol. 2004;171:1482–6.

    Article  PubMed  CAS  Google Scholar 

  60. Mueller-Lisse UG, Swanson MG, Vigneron DB, Hricak H, Bessette A, Males RG, et al. Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging. Magn Reson Med. 2001;46:49–57.

    Article  PubMed  CAS  Google Scholar 

  61. Prando A, Kurhanewicz J, Borges AP, Oliveira Jr EM, Figueiredo E. Prostatic biopsy directed with endorectal MR spectroscopic imaging findings in patients with elevated prostate specific antigen levels and prior negative biopsy findings: early experience. Radiology. 2005;236:903–10.

    Article  PubMed  Google Scholar 

  62. Yu KK, Scheidler J, Hricak H, Vigneron DB, Zaloudek CJ, Males RG, et al. Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology. 1999;213:481–8.

    PubMed  CAS  Google Scholar 

  63. Zakian KL, Sircar K, Hricak H, Chen HN, Shukla-Dave A, Eberhardt S, et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005;234:804–14.

    Article  PubMed  Google Scholar 

  64. Selnaes KM, Gribbestad IS, Bertilsson H, Wright A, Angelsen A, Heerschap A, Tessem MB. Spatially matched in vivo and ex vivo MR metabolic profiles of prostate cancer – investigation of a correlation with Gleason score. NMR Biomed. 2012. doi:10.1002/nbm.2901.

  65. Selnaes KM, Heerschap A, Jensen LR, Tessem MB, Schweder GJ, Goa PE, et al. Peripheral zone prostate cancer localization by multiparametric magnetic resonance at 3 T: unbiased cancer identification by matching to histopathology. Invest Radiol. 2012;47:624–33.

    Article  PubMed  Google Scholar 

  66. Klomp DW, Bitz AK, Heerschap A, Scheenen TW. Proton spectroscopic imaging of the human prostate at 7T. NMR Biomed. 2009;22:495–501.

    Article  PubMed  CAS  Google Scholar 

  67. Cazares LH, Troyer D, Mendrinos S, Lance RA, Nyalwidhe JO, Beydoun HA, et al. Imaging mass spectrometry of a specific fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin Cancer Res. 2009;15:5541–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PHS/NIH grants CA115746, CA162959, and CA141139 (LLC), and the MGH A.A. Martinos Center for Biomedical Imaging.

Conflicts of interest

None.

Authors’ contributions

E.A.D.: literature research and manuscript preparation; E.M.S.: literature research and manuscript preparation; L.L.C.: providing funding, and manuscript preparation and review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo L. Cheng.

Additional information

Eva-Margarete Spur and Emily A. Decelle contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spur, EM., Decelle, E.A. & Cheng, L.L. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry. Eur J Nucl Med Mol Imaging 40 (Suppl 1), 60–71 (2013). https://doi.org/10.1007/s00259-013-2379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2379-x

Keywords

Navigation