Skip to main content

Advertisement

Log in

Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging.

Methods

We employed two MRCA: Lumirem® (oral) and Gadovist® (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and 18F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist® (IV) and a volunteer study employing two different oral MRCA (Lumirem® and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat–water segmentation and an external atlas-based and pattern recognition (AT&PR) algorithm.

Results

IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT&PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps.

Conclusion

In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation of the PET emission signals. MR-based attenuation maps may be biased by oral iron oxide-based MRCA unless advanced AC algorithms are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pichler BJ, Kolb A, Nägele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51:333–6.

    Article  PubMed  Google Scholar 

  2. Schulthess GK, Schlemmer H-PW. A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S3–9.

    Article  Google Scholar 

  3. Ratib O, Beyer T. Whole-body hybrid PET/MRI: ready for clinical use? Eur J Nucl Med Mol Imaging. 2011;38:992–5.

    Article  PubMed  Google Scholar 

  4. Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24:73–8.

    PubMed  CAS  Google Scholar 

  5. Ratib O, Becker M, Vallee JP, Loubeyre P, Wissmeyer M, Willi J-P, et al. Whole body PET-MRI scanner: first experience in oncology [abstract]. J Nucl Med. 2010;51 Suppl 2:165.

    Google Scholar 

  6. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.

    Article  PubMed  CAS  Google Scholar 

  7. Delso G, Fürst S, Jakoby BJ, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22.

    Article  PubMed  Google Scholar 

  8. von Schulthess GK, Burger C. Integrating imaging modalities: what makes sense from a workflow perspective? Eur J Nucl Med Mol Imaging. 2010;37:980–90.

    Article  Google Scholar 

  9. Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S93–104.

    Article  PubMed  Google Scholar 

  10. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–26.

    Article  PubMed  Google Scholar 

  11. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38(1):138–52.

    Article  PubMed  CAS  Google Scholar 

  12. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;52(9):1392–9.

    Article  PubMed  Google Scholar 

  13. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med. 2003;33:166–79.

    Article  PubMed  Google Scholar 

  14. Bellin MF. MR contrast agents, the old and the new. Eur J Radiol. 2006;60:314–23.

    Article  PubMed  Google Scholar 

  15. Cohade C, Osman M, Nakamoto Y, Marshall LT, Links JM, Fishman EK, et al. Initial experience with oral contrast in PET/CT: phantom and clinical studies. J Nucl Med. 2003;44(3):412–6.

    PubMed  Google Scholar 

  16. Antoch G, Freudenberg LS, Egelhof T, Stattaus J, Jentzen W, Debatin JF, et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med. 2002;43:1339–42.

    PubMed  Google Scholar 

  17. Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF. To enhance or not to enhance? 18F-FDG and CT contrast agents in dual modality 18F-FDG PET/CT. J Nucl Med. 2004;45 Suppl:56S–65S.

    PubMed  CAS  Google Scholar 

  18. Wang YXJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.

    Article  PubMed  CAS  Google Scholar 

  19. Hahn PF, Stark DD, Lewis JM, Saini S, Elizondo G, Weissleder R, et al. First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology. 1990;175(3):695–700.

    PubMed  CAS  Google Scholar 

  20. Leung K. Ferumoxil. Molecular imaging and contrast agent database. Bethesda: National Center for Biotechnology Information; 2004-2010. http://www.ncbi.nlm.nih.gov/books/NBK22994/.

  21. Tombach B, Heindel W. Value of 1.0- M gadolinium chelates: review of preclinical and clinical data on gadobutrol. Eur Radiol. 2002;12(6):1550–6.

    Article  PubMed  Google Scholar 

  22. Huppertz A, Rohrer M. Gadobutrol, a highly concentrated MR-imaging contrast agent: its physicochemical characteristics and the basis for its use in contrast-enhanced MR angiography and perfusion imaging. Eur Radiol. 2004;14:M12–8.

    Article  PubMed  Google Scholar 

  23. Cheng KT. Gadobutrol. Molecular imaging and contrast agent database. Bethesda: National Center for Biotechnology Information; 2004-2010. http://www.ncbi.nlm.nih.gov/books/NBK23589/.

  24. Dooley M, Jarvis B. Iomeprol. A review of its use as a contrast medium. Drugs. 2000;59(5):1169–86.

    Article  PubMed  CAS  Google Scholar 

  25. Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, et al. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr. 1994;18(1):110–8.

    Article  PubMed  CAS  Google Scholar 

  26. Stark H, Woods J, Paul I, Hingorani R. Direct Fourier reconstruction in computer tomography. IEEE Trans Acoust Speech Signal Process. 1981;29:237–45.

    Article  Google Scholar 

  27. Brambilla M, Secco C, Dominietto M, Matheoud R, Sacchetti G, Inglese E. Performance characteristics obtained for a new 3-dimensional lutetium oxyorthosilicate-based whole-body PET/CT scanner with the national electrical manufacturers association NU 2-2001 standard. J Nucl Med. 2005;46:2083–91.

    PubMed  CAS  Google Scholar 

  28. National Electrical Manufacturers Association (NEMA). Standards publication NU 2-1994: performance measurements of positron emission tomographs. Washington, DC: NEMA; 1994.

    Google Scholar 

  29. National Electrical Manufacturers Association (NEMA). Standards publication NU 2-2007: performance measurements of positron emission tomographs. Rosslyn: NEMA; 2007.

    Google Scholar 

  30. Tropp J. Image brightening in samples of high dielectric constant. J Magn Reson. 2004;167:12–24.

    Article  PubMed  CAS  Google Scholar 

  31. Bai C, Shao L, Da Silva AJ, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci. 2003;50(5):1510–5.

    Article  Google Scholar 

  32. Riordan RD, Khonsari M, Jeffries J, Maskell GF, Cook PG. Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography: a preliminary evaluation. Br J Radiol. 2004;77:991–9.

    Article  PubMed  CAS  Google Scholar 

  33. Arrivé L, Coudray C, Azizi L, Lewin M, Hoeffel C, Monnier-Cholley L, et al. Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography. J Radiol. 2007;88:1689–94.

    Article  PubMed  Google Scholar 

  34. Mawlawi O, Erasmus JJ, Munden RF, Pan T, Knight AE, Macapinlac HA, et al. Quantifying the effect of IV contrast media on integrated PET/CT: clinical evaluation. AJR Am J Roentgenol. 2006;186:308–19.

    Article  PubMed  Google Scholar 

  35. Yau YY, Chan WS, Tam YM, Vernon P, Wong S, Coel M, et al. Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error? J Nucl Med. 2005;46:283–91.

    PubMed  Google Scholar 

  36. Lee W, Park J, Kim KM, Ko I, Lim I, Kim JS, et al. Effects of MR contrast agents on PET quantitation in PET-MRI study [abstract]. J Nucl Med. 2011;52 Suppl 1:53.

    Google Scholar 

  37. Kramer H, Michaely HJ, Requardt M, Rohrer M, Reeder S, Reiser MF, et al. Effects of injection rate and dose on image quality in time-resolved magnetic resonance angiography (MRA) by using 1.0M contrast agents. Eur Radiol. 2007;17:1394–402.

    Article  PubMed  Google Scholar 

  38. Fritz-Hansen T, Rostrup E, Larsson HB, Søndergaard L, Ring P, Henriksen O. Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med. 1996;36:225–31.

    Article  PubMed  CAS  Google Scholar 

  39. Robert P, Violas X, Santus R, Le Bihan D, Corot C. Optimization of a blood pool contrast agent injection protocol for MR angiography. J Magn Reson Imaging. 2005;21:611–9.

    Article  PubMed  Google Scholar 

  40. Samarin A, Burger C, Kuhn FP, Schmid DT, von Schulthess GK. The influence of bone attenuation on tracer uptake values of bone lesions of different composition in PET imaging. Eur J Nucl Med Mol Imaging. 2009;38 Suppl 2:S156.

    Google Scholar 

  41. Lim JS, Kim MJ, Myoung S, Park MS, Choi JY, Choi JS, et al. MR cholangiography for evaluation of hilar branching anatomy in transplantation of the right hepatic lobe from a living donor. AJR Am J Roentgenol. 2008;191(2):537–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Gröper and Mr. Zeger (University of Tübingen, Germany) for performing the patient and volunteer scans and supporting the PET/MR phantom measurements. We also thank Julia Mannheim (University of Tübingen, Germany) for performing preliminary transmission scan measurements in a Siemens Inveon preclinical system (not discussed in the article). Finally, we thank L. Tellmann (FZ Jülich, Germany) for performing the transmission scan measurements and Brigitte Gückel (University of Tübingen, Germany) for managing the administration of the scientific study.

During the preparation of the manuscript C.L. and T.B. were supported in part by the Imaging Science Institute, a collaborative effort of Siemens Healthcare and the Department of Diagnostic and Interventional Radiology at the University of Tübingen.

Conflicts of interest

T.B. is founder and president of cmi-experts GmbH, but reports no conflicts of interest with the conduct of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Lois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lois, C., Bezrukov, I., Schmidt, H. et al. Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging. Eur J Nucl Med Mol Imaging 39, 1756–1766 (2012). https://doi.org/10.1007/s00259-012-2190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2190-0

Keywords

Navigation