Skip to main content

Advertisement

Log in

Iterative reconstruction with correction of the spatially variant fan-beam collimator response in neurotransmission SPET imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The dopamine transporter (DAT) has been shown to be a sensitive indicator of nigrostriatal dopamine function. Although visual inspection is often sufficient to assess DAT imaging, quantification could improve the diagnostic accuracy of single-photon emission tomography (SPET) studies of the dopaminergic system. The aim of this study was to assess the accuracy of quantification of the striatal/background uptake ratio when correction for attenuation, scatter and spatially variant fan-beam collimator response is performed in technetium-99m and iodine-123 SPET imaging. A numerical striatal phantom was implemented, and simulated projections of low-energy photons were obtained by using the SimSET Monte Carlo code. High-energy contamination in 123I studies was modelled from experimental measurements with 99mTc and 123I. The ordered subsets expectation maximisation (OSEM) algorithm was employed in reconstruction. Mean improvements of 8% and 16% were obtained in the calculated striatal/background uptake ratio in the putamen and the caudate, respectively, when the spatially variant point spread function was included in the transition matrix. Ideal scatter correction resulted in improvements in the putamen and caudate of 9% for 99mTc agents and 19% for 123I agents. Improvements averaged 31% in the putamen and 43% in the caudate when correction for attenuation, scatter and spatially variant collimator response was included in the reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Tatsch K. Imaging of the dopaminergic system in parkinsonism with SPET. Nucl Med Commun 2001; 22:819–827.

    Article  CAS  PubMed  Google Scholar 

  2. Pilowsky LS. Probing targets for antipsychotic drug with PET and SPET receptor imaging. Nucl Med Commun 2001; 22:829–833.

    Article  CAS  PubMed  Google Scholar 

  3. Acton PD, Choi S-R, Plössl K, Kung HF. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur J Nucl Med Mol Imaging 2002; 29:691–698.

    Article  CAS  PubMed  Google Scholar 

  4. Tatsch K. Can SPET imaging of dopamine uptake sites replace PET imaging in Parkinson's disease?. Eur J Nucl Med Mol Imaging 2002; 29:711–714.

    Article  PubMed  Google Scholar 

  5. Frey KA. Can SPET imaging of dopamine uptake sites replace PET imaging in Parkinson's disease? Eur J Nucl Med Mol Imaging 2002; 29:715–717.

    Article  CAS  PubMed  Google Scholar 

  6. Booij J, Tissingh G, Winogrodzka a, Van Royen EA. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med 1999; 26:171–182.

    Article  CAS  PubMed  Google Scholar 

  7. Neumeyer JL, Wang S, Milius RA et al. N-omega-fluooalkyl analogs of (IR)-2 beta-carbomethoxy-3 beta-(4-iodophenyl)-tropane (beta-CIT): radiotracers for positron emission tomography and single photon emission computed tomography imaging of dopamine transporters. J Med Chem 1994; 37:558–561.

    Google Scholar 

  8. Kung MP, Stevenson DA, Plössl K, Meegalla SK, Beckwith A, Essman WD, Mu M, Lucki I, Kung HF. [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med 1997; 24:372–380.

    Article  CAS  PubMed  Google Scholar 

  9. Johannsen B, Pietzsch HJ. Development of technetium-99m-based CNS receptor ligands: have there been any advances?. Eur J Nucl Med Mol Imaging 2002; 29:263–275.

    Article  PubMed  Google Scholar 

  10. El Fakhri G, Moore SC, Maksud P, Aurengo A, Kijewski MF. Absolute activity quantitation in simultaneous123I/99mTc brain SPECT. J Nucl Med 2001; 42:300–308.

    PubMed  Google Scholar 

  11. Habraken JB, Booij J, Slomka P, Sokole EB, von Royen EA. Quantification and visualization of defects of the functional dopaminergic system using an automatic algorithm. J Nucl Med 1999; 40:1091–1097.

    CAS  PubMed  Google Scholar 

  12. Radau P, Linke R, Slomka PJ, Tatsch K. Optimization of automated quantification of123I-IBZM uptake in the striatum applied to parkinsonism. J Nucl Med 2000; 41:220–227.

    Google Scholar 

  13. Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AGM, Wolters EC, Vanroyen EA [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson's disease. J Neurol Neurosurg Psychiatry 1997; 62:133–140.

    CAS  PubMed  Google Scholar 

  14. Mozley PD, Schneider JS, Acton PD, Plossl K, Stern MB, Siderowf A, Leopold NA, Li PY, Alavi A, Kung HF. Binding of [99mTc]TRODAT-1 to dopamine transporters in patients with Parkinson's disease and in healthy volunteers. J Nucl Med 2000; 41:584–589.

    CAS  PubMed  Google Scholar 

  15. Seibyl JP, Marek K, Sheff K, Baldwin RM, Zoghbi S, Zea-Ponce Y, Charney DS, van Dyck CH, Hoffer PB, Innis RB. Test/retest reproducibility of iodine-123-β-CIT SPECT brain measurement of dopamine transporters in Parkinson's patients. J Nucl Med 1997; 38:1453–1459.

    CAS  PubMed  Google Scholar 

  16. Linke R, Gostomzyk J, Hahn K, Tatsch K. [I-123]IPT-binding to the presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls. Eur J Nucl Med 2000; 27:1809–1812.

    Article  CAS  PubMed  Google Scholar 

  17. Stoof JC, Winogrodzka A, van Muiswinkel FL, Wolters EC, Voorn P, Groenewegen HJ, Booij J, Drukarch B. Leads for the development of neuroprotective treatment in Parkinson's disease and brain imaging methods for estimating treatment efficacy. Eur J Pharmacol 1999; 375:75–86.

    Article  CAS  PubMed  Google Scholar 

  18. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets projection data IEEE Trans Med Imaging 1994; 13:601–609.

    Article  Google Scholar 

  19. Harrison RL, Vannoy SD, Haynor SB, Gillispie SB, Kaplan MS, Lewellen TK. Preliminary experience with the photon history generator module of a public-domain simulation system for emission tomography. IEEE NSS-MIC Conf Record 1993; 2:1154–1158.

    Google Scholar 

  20. Salvat F, Fernandez-Varea JM, Acosta E, Sempau J. PENELOPE A Code for Monte Carlo Simulation of Electron and Photon Transport. Nuclear Energy Agency (OECD/NEA), Issy-les-Moulineaux (France), 2001. Available in pdf format at http://www.nea.fr

  21. Cot A, Sempau J, Pareto D, Bullich S, Pavía J, Calviño F, Ros D. Evaluation of the geometric, scatter and septal penetration components in fan beam collimators using Monte Carlo simulation IEEE Trans Nucl Sci 2002; 49:12–16.

    Article  Google Scholar 

  22. El Fakhri G, Maksud P, Kijewski MF, Habert MO, Todd-Pokropek A, Aurengo A, Moore SC. Scatter and cross-talk corrections in simultaneous Tc-99m/I-123 brain SPECT using constrained factor analysis and artificial neural networks. IEEE Trans Nucl Sci 2000; 47:1573–1580.

    Article  Google Scholar 

  23. Buvat I, Rodríguez-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995; 36:1476–1488.

    CAS  PubMed  Google Scholar 

  24. Pareto D, Pavía J, Falcon C, Juvells I, Ros D. Characterisation of fan-beam collimators. Eur J Nucl Med 2001; 28:144–149.

    Article  CAS  PubMed  Google Scholar 

  25. Pareto D, Cot A, Falcon C, Juvells I, Pavía J, Ros D. Geometrical response modeling in fan beam collimators. A Numerical Simulation. IEEE Trans Nucl Sci 2002; 49:17–24.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the MCYT (SAF99-0137, SAF2002-04270-C02-01/02) and FIS (PI020485, G03/185, C03/06). D. Pareto was awarded a PhD fellowship by the University of Barcelona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domènec Ros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pareto, D., Cot, A., Pavía, J. et al. Iterative reconstruction with correction of the spatially variant fan-beam collimator response in neurotransmission SPET imaging. Eur J Nucl Med Mol Imaging 30, 1322–1329 (2003). https://doi.org/10.1007/s00259-003-1229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1229-7

Keywords

Navigation