Skip to main content
Log in

Phenomenological analysis of the phase transitions sequence in the ferroelectric crystal (CH3NH3)5Bi2Cl11 (PMACB)

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A phenomenological model is proposed to describe the sequence of phase transitions in Pentakis (methylammonium) Undecachlorodibismuthate (111), (CH3NH3)5Bi2Cl11 (PMACB) crystal on the basis of the recent structural data. The ferroelectric phase transition at 307 K is attributed to the ordering in a sublattice of the methylammonium cations CH3NH +3 } placed in centrosymmetric sites in the paraelectric phase, whereas the isomorphous anomaly at about 180 K is related to a variation of the order in the sublattice of the remaining CH3NH +3 } cations. The phenomenological thermodynamic potential is constructed for this system of two nonequivalent sublattices and the numerical values of its coefficients are then estimated from the dielectric, pyroelectric and calorimetric data. The sublattices are found to be weakly coupled near the ferroelectric phase transition. The anomaly at 180 K is interpreted as a continuous trace of a first order phase transition in a field created by the cations already ordered in the ferroelectric phase transition. This is analogous to a cusp A+3 in the catastrophes theory. The comparison of the Curie constants with the saturation values of the spontaneous polarization suggests that the sublattices cannot be treated as consisting of simple two-states pseudospins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toledano, J.C., Toledano, P.: The Landau theory of phase transitions. Singapore: World Scientific 1987

  2. Aizu, K.: J. Phys. Soc. Jpn 54, 203 (1985)

    Google Scholar 

  3. Schneider, V.E., Tornau, E.E.: Phys. Status Solidi (b) 111, 565 (1982)

    Google Scholar 

  4. Jayaraman, A.: Phys. Rev. 137, A179 (1965)

  5. Mott, N.F.: Rev. Mod. Phys. 40, 677 (1968)

    Google Scholar 

  6. Jayaraman, A., McWhan, D.B., Remeika, J.P., Dernier, P.D.: Phys. Rev. B2 3751 (1970)

  7. Gesi, K., Ozawa, K.: Phys. Lett. 49A, 283 (1974)

  8. Gesi, K.: J. Phys. Soc. Jpn. 40, 483 (1976)

    Google Scholar 

  9. Dvořak, V., Ishibashi, Y.: J. Phys. Soc. Jpn. 41, 548 (1976)

    Google Scholar 

  10. Ishibashi, Y., Hidaka, Y.: J. Phys. Soc. Jpn. 60, 1634 (1991)

    Google Scholar 

  11. Gufan, Yu.M., Larin, E.S.: Sov. Phys. Dokl. 23, 754 (1978)

    Google Scholar 

  12. Jakubas, R.: Solid State Commun. 69, 267 (1989)

  13. Jakubas, R., Sobczyk, L., Lefebvre, J.: Ferroelectrics 100, 143 (1989)

  14. Iwata, M., Ishibashi, Y.: J. Phys. Soc. Jpn. 59, 4239 (1990)

    Google Scholar 

  15. Iwata, M., Ishibashi, Y.: J. Phys. Soc. Jpn. 61, 4615 (1992)

    Google Scholar 

  16. Iwata, M., Tojo, T., Atake, T., Ishibashi, Y.: J. Phys. Soc. Jpn. 63, 3751 (1994)

    Google Scholar 

  17. Lefebvre, J., Carpentier, P., Jakubas, R.: Acta Crystallogr. B47, 228 (1991)

  18. Carpentier, P., Lefebvre, J., Jakubas, R.: Acta Crystallogr. B51, 167 (1995)

  19. Chapuis, G., Arend, H., Kind, R.: Phys. Status Solidi (a) 31, 449 (1975)

    Google Scholar 

  20. Chapuis, G., Kind, R., Arend, H.: Phys. Status Solidi (a) 36, 285 (1976)

    Google Scholar 

  21. Zheludev, I.S., Shuvalov, A.L.: Kristalografiya 1, 681 (1956)

  22. Sonin, A.S., Zheludev, I.S.: Kristallografiya 4, 487 (1959)

  23. Blinc, R., Žekš, B.: Soft modes in ferroelectrics and antiferroelectrics. Amsterdam: North Holland 1974

  24. Aizu, K.: J. Phys. Soc. Jpn. 27, 387 (1969)

    Google Scholar 

  25. Aizu, K.: Phys. Rev. B2, 754 (1970)

  26. Mroz, J. Jakubas, R.: Ferroelectrics 118, 29 (1991)

  27. Lefebvre, J., Carpentier, P., Jakubas, R., Sobczyk, L.: Phase Transitions 33, 31 (1991)

    Google Scholar 

  28. Cach, R., Jakubas, R.: Ferroelectrics 108, 121 (1990)

  29. Strukov, B.A., Poprawski, R., Taraskin, S.A., Mroz, J.: Phys. Status Solidi (a) 143, K9 (1994)

  30. Kittel, C.: Phys. Rev. 82, 729 (1951)

    Google Scholar 

  31. Salje, E.K.H.: Phase transitions in ferroelastic and co-elastic crystals. Cambridge: Cambridge University Press 1970

  32. Machlup, S., Onsager, L.: Phys. Rev. 91, 1505 (1953)

    Google Scholar 

  33. Landau, L.D., Khalatnikov, I.M., Dokl. Akad. Nauk SSSR 46, 469 (1954)

    Google Scholar 

  34. Pawlaczyk, C., Jakubas, R., Planta, K., Bruch, C., Unruh, H.-G.: J. Phys. Condensed Matter 4, 2695 (1992)

    Google Scholar 

  35. Pawlaczyk, C., Jakubas, R., Planta, K., Bruch, C., Stephan, J., Unruh, H.-G.: Ferroelectrics 126, 145 (1992)

  36. Gilmore, R.: Catastrophe theory for scientists and engineers. New York: Wiley 1981

  37. Gesi, K., Iwata, M., Ishibashi, Y.: J. Phys. Soc. Jpn. 64, 2650 (1995)

    Google Scholar 

  38. Gesi, K., Iwata, M., Ishibashi, Y.: J. Phys. Soc. Jpn. 65,14 (1996)

    Google Scholar 

  39. Pawlaczyk, C., Planta, C., Bruch, C., Stephan, J., Unruh, H.-G.: J. Phys.: Condensed Matter 4, 2678 (1992)

    Google Scholar 

  40. Zieliński, P., et al.: (to be published)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lefebvre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpentier, P., Zieliński, P., Lefebvre, J. et al. Phenomenological analysis of the phase transitions sequence in the ferroelectric crystal (CH3NH3)5Bi2Cl11 (PMACB). Z. Phys. B 102, 403–414 (1997). https://doi.org/10.1007/s002570050305

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002570050305

Navigation