Skip to main content
Log in

CT in osteoarthritis: its clinical role and recent advances

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Computed tomography (CT) is a widely available imaging method and considered as one of the most reliable techniques in bone assessment. Although CT has limited tissue contrast and needs radiation exposure, it has several advantages like fast scanning time and high spatial resolution. In this regard, CT has unique roles in osteoarthritis (OA) and its variable utilities have been reported. Hence, this review highlights the clinical role of CT in OA of representative joints. In addition, CT showed the several technical advancements recently, for example, acquiring the CT image with standing, obtaining the dual-energy data, and novel photon-counting detector development. Therefore, the recent studies and potential utility of these new CT systems in OA are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthr Cartil. 2004;12(Suppl A):S20-30.

    Article  Google Scholar 

  2. Kinds MB, Vincken KL, Hoppinga TN, Bleys RL, Viergever MA, Marijnissen AC, et al. Influence of variation in semiflexed knee positioning during image acquisition on separate quantitative radiographic parameters of osteoarthritis, measured by Knee Images Digital Analysis. Osteoarthr Cartil. 2012;20(9):997–1003.

    Article  CAS  Google Scholar 

  3. Brandt KD, Fife RS, Braunstein EM, Katz B. Radiographic grading of the severity of knee osteoarthritis: relation of the Kellgren and Lawrence grade to a grade based on joint space narrowing, and correlation with arthroscopic evidence of articular cartilage degeneration. Arthritis Rheum. 1991;34(11):1381–6.

    Article  CAS  PubMed  Google Scholar 

  4. Wenham CY, Grainger AJ, Conaghan PG. The role of imaging modalities in the diagnosis, differential diagnosis and clinical assessment of peripheral joint osteoarthritis. Osteoarthr Cartil. 2014;22(10):1692–702.

    Article  CAS  Google Scholar 

  5. Sakellariou G, Conaghan PG, Zhang W, Bijlsma JWJ, Boyesen P, D’Agostino MA, et al. EULAR recommendations for the use of imaging in the clinical management of peripheral joint osteoarthritis. Ann Rheum Dis. 2017;76(9):1484–94.

    Article  PubMed  Google Scholar 

  6. Hannan MT, Felson DT, Pincus T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol. 2000;27(6):1513–7.

    CAS  PubMed  Google Scholar 

  7. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986;213:34–40.

    Article  Google Scholar 

  8. Bousson V, Lowitz T, Laouisset L, Engelke K, Laredo JD. CT imaging for the investigation of subchondral bone in knee osteoarthritis. Osteoporos Int. 2012;23(Suppl 8):S861-865.

    Article  PubMed  Google Scholar 

  9. Kamibayashi L, Wyss UP, Cooke TD, Zee B. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone. 1995;17(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  10. Omoumi P, Babel H, Jolles BM, Favre J. Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison of non-osteoarthritic (OA) and severe OA knees. Osteoarthr Cartil. 2017;25(11):1850–7.

    Article  CAS  Google Scholar 

  11. Chan WP, Lang P, Stevens MP, Sack K, Majumdar S, Stoller DW, et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol. 1991;157(4):799–806.

    Article  CAS  PubMed  Google Scholar 

  12. Burnett WD, Kontulainen SA, McLennan CE, Hazel D, Talmo C, Wilson DR, et al. Knee osteoarthritis patients with more subchondral cysts have altered tibial subchondral bone mineral density. BMC Musculoskelet Disord. 2019;20(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guermazi A, Niu J, Hayashi D, Roemer FW, Englund M, Neogi T, et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ : British Med J. 2012;345: e5339.

    Article  Google Scholar 

  14. Wong SH, Chiu KY, Yan CH. Review article: osteophytes. J Orthop Surg (Hong Kong). 2016;24(3):403–10.

    Article  PubMed  Google Scholar 

  15. Wilkins E, Dieppe P, Maddison P, Evison G. Osteoarthritis and articular chondrocalcinosis in the elderly. Ann Rheum Dis. 1983;42(3):280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Misra D, Guermazi A, Sieren JP, Lynch J, Torner J, Neogi T, et al. CT imaging for evaluation of calcium crystal deposition in the knee: initial experience from the Multicenter Osteoarthritis (MOST) study. Osteoarthr Cartil. 2015;23(2):244–8.

    Article  CAS  Google Scholar 

  17. Wang Y, Wei J, Zeng C, Xie D, Li H, Yang T, et al. Association between chondrocalcinosis and osteoarthritis: a systematic review and meta-analysis. Int J Rheum Dis. 2019;22(7):1175–82.

    Article  PubMed  Google Scholar 

  18. Foreman SC, Gersing AS, von Schacky CE, Joseph GB, Neumann J, Lane NE, et al. Chondrocalcinosis is associated with increased knee joint degeneration over 4 years: data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2020;28(2):201–7.

    Article  CAS  Google Scholar 

  19. Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg British vol. 1991;73(5):709–14.

    Article  CAS  Google Scholar 

  20. Mahaluxmivala J, Bankes MJ, Nicolai P, Aldam CH, Allen PW. The effect of surgeon experience on component positioning in 673 press fit condylar posterior cruciate-sacrificing total knee arthroplasties. J Arthroplasty. 2001;16(5):635–40.

    Article  CAS  PubMed  Google Scholar 

  21. Miyasaka T, Kurosaka D, Saito M, Omori T, Ikeda R, Marumo K. Accuracy of computed tomography-based navigation-assisted total knee arthroplasty: outlier analysis. J Arthroplasty. 2017;32(1):47–52.

    Article  PubMed  Google Scholar 

  22. Turmezei TD, Lomas DJ, Hopper MA, Poole KE. Severity mapping of the proximal femur: a new method for assessing hip osteoarthritis with computed tomography. Osteoarthr Cartil. 2014;22(10):1488–98.

    Article  CAS  Google Scholar 

  23. Zacharias A, Pizzari T, English DJ, Kapakoulakis T, Green RA. Hip abductor muscle volume in hip osteoarthritis and matched controls. Osteoarthr Cartil. 2016;24(10):1727–35.

    Article  CAS  Google Scholar 

  24. Zacharias A, Green RA, Semciw A, English DJ, Kapakoulakis T, Pizzari T. Atrophy of hip abductor muscles is related to clinical severity in a hip osteoarthritis population. Clin Anat. 2018;31(4):507–13.

    Article  PubMed  Google Scholar 

  25. Momose T, Inaba Y, Choe H, Kobayashi N, Tezuka T, Saito T. CT-based analysis of muscle volume and degeneration of gluteus medius in patients with unilateral hip osteoarthritis. BMC Musculoskelet Disord. 2017;18(1):457.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang BK, Tan W, Scherer KF, Rennie W, Chung CB, Bancroft LW. Standard and advanced imaging of hip osteoarthritis What the radiologist should know. Semin Musculoskelet Radiol. 2019;23(3):289–303.

    Article  PubMed  Google Scholar 

  27. Turmezei TD, Fotiadou A, Lomas DJ, Hopper MA, Poole KE. A new CT grading system for hip osteoarthritis. Osteoarthr Cartil. 2014;22(10):1360–6.

    Article  CAS  Google Scholar 

  28. Janzen DL, Connell DG, Munk PL, Buckley RE, Meek RN, Schechter MT. Intraarticular fractures of the calcaneus: value of CT findings in determining prognosis. AJR Am J Roentgenol. 1992;158(6):1271–4.

    Article  CAS  PubMed  Google Scholar 

  29. Cohen MM, Vela ND, Levine JE, Barnoy EA. Validating a new computed tomography atlas for grading ankle osteoarthritis. J Foot Ankle Surg. 2015;54(2):207–13.

    Article  PubMed  Google Scholar 

  30. Kalichman L, Kim DH, Li L, Guermazi A, Hunter DJ. Computed tomography-evaluated features of spinal degeneration: prevalence, intercorrelation, and association with self-reported low back pain. Spine J. 2010;10(3):200–8.

    Article  PubMed  Google Scholar 

  31. Kalichman L, Guermazi A, Li L, Hunter DJ. Association between age, sex, BMI and CT-evaluated spinal degeneration features. J Back Musculoskelet Rehabil. 2009;22(4):189–95.

    Article  PubMed  Google Scholar 

  32. Weishaupt D, Zanetti M, Boos N, Hodler J. MR imaging and CT in osteoarthritis of the lumbar facet joints. Skeletal Radiol. 1999;28(4):215–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kalichman L, Li L, Kim DH, Guermazi A, Berkin V, O’Donnell CJ, et al. Facet joint osteoarthritis and low back pain in the community-based population. Spine (Phila Pa 1976). 2008;33(23):2560–5.

    Article  PubMed  Google Scholar 

  34. Visser LH, Nijssen PGN, Tijssen CC, van Middendorp JJ, Schieving J. Sciatica-like symptoms and the sacroiliac joint: clinical features and differential diagnosis. Eur Spine J. 2013;22(7):1657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vanelderen P, Szadek K, Cohen SP, De Witte J, Lataster A, Patijn J, et al. 13.Sacroiliac joint pain. Pain Pract: Off J World Inst Pain. 2010;10(5):470–8.

    Article  Google Scholar 

  36. Lee YH, Hong YS, Park W, Kwon SR, Choi HJ, Hong SJ, et al. Value of multidetector computed tomography for the radiologic grading of sacroiliitis in ankylosing spondylitis. Rheumatol Int. 2013;33(4):1005–11.

    Article  PubMed  Google Scholar 

  37. Devauchelle-Pensec V, D’Agostino MA, Marion J, Lapierre M, Jousse-Joulin S, Colin D, et al. Computed tomography scanning facilitates the diagnosis of sacroiliitis in patients with suspected spondylarthritis: results of a prospective multicenter French cohort study. Arthritis Rheum. 2012;64(5):1412–9.

    Article  PubMed  Google Scholar 

  38. Bäcklund J, Clewett Dahl E, Skorpil M. Is CT indicated in diagnosing sacroiliac joint degeneration? Clin Radiol. 2017;72(8):693.e699-693.e613.

    Article  Google Scholar 

  39. Asada M, Tokunaga D, Arai Y, Oda R, Fujiwara H, Yamada K, et al. Degeneration of the Sacroiliac joint in hip osteoarthritis patients: a three-dimensional image analysis. J Belg Soc Radiol. 2019;103(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gielis WP, Weinans H, Nap FJ, Roemer FW, Foppen W. Scoring osteoarthritis reliably in large joints and the spine using whole-body CT: Osteoarthritis computed tomography-score (OACT-Score). J Pers Med. 2020;11(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Buckwalter KA. CT Arthrography. Clin Sports Med. 2006;25(4):899–915.

    Article  PubMed  Google Scholar 

  42. Vande Berg BC, Lecouvet FE, Poilvache P, Jamart J, Materne R, Lengele B, et al. Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology. 2002;222(2):430–6.

    Article  PubMed  Google Scholar 

  43. Gagliardi JA, Chung EM, Chandnani VP, Kesling KL, Christensen KP, Null RN, et al. Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol. 1994;163(3):629–36.

    Article  CAS  PubMed  Google Scholar 

  44. Omoumi P, Babel H, Jolles BM, Favre J. Relationships between cartilage thickness and subchondral bone mineral density in non-osteoarthritic and severely osteoarthritic knees: in vivo concomitant 3D analysis using CT arthrography. Osteoarthr Cartil. 2019;27(4):621–9.

    Article  CAS  Google Scholar 

  45. Roemer FW, Demehri S, Omoumi P, Link TM, Kijowski R, Saarakkala S, et al. State of the art: imaging of osteoarthritis—revisited 2020. Radiology. 2020;296(1):5–21.

    Article  PubMed  Google Scholar 

  46. Kim JN, Park HJ, Kim MS, Kook SH, Ham SY, Kim E, et al. Radiation dose reduction in extremity multi-detector CT: a comparison of image quality with a standard dose protocol. Eur J Radiol. 2021;135: 109405.

    Article  PubMed  Google Scholar 

  47. Gervaise A, Osemont B, Lecocq S, Noel A, Micard E, Felblinger J, et al. CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol. 2012;22(2):295–301.

    Article  PubMed  Google Scholar 

  48. Lee SH, Yun SJ, Jo HH, Kim DH, Song JG, Park YS. Diagnostic accuracy of low-dose versus ultra-low-dose CT for lumbar disc disease and facet joint osteoarthritis in patients with low back pain with MRI correlation. Skeletal Radiol. 2018;47(4):491–504.

    Article  PubMed  Google Scholar 

  49. Felson DT, Niu J, Guermazi A, Roemer F, Aliabadi P, Clancy M, et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum. 2007;56(9):2986–92.

    Article  PubMed  Google Scholar 

  50. Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134(7):541–9.

    Article  CAS  PubMed  Google Scholar 

  51. Wilson MP, Lui K, Nobbee D, Murad MH, McInnes MDF, McGrath TA, et al. Diagnostic accuracy of dual-energy CT for the detection of bone marrow edema in the appendicular skeleton: a systematic review and meta-analysis. Eur Radiol. 2021;31(3):1558–68.

    Article  PubMed  Google Scholar 

  52. Ghazi Sherbaf F, Sair HI, Shakoor D, Fritz J, Schwaiger BJ, Johnson MH, et al. DECT in detection of vertebral fracture–associated bone marrow edema: a systematic review and meta-analysis with emphasis on technical and imaging interpretation parameters. Radiology. 2021;300(1):110–9.

    Article  PubMed  Google Scholar 

  53. Ea HK, Nguyen C, Bazin D, Bianchi A, Guicheux J, Reboul P, et al. Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum. 2011;63(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  54. Gamala M, Jacobs JWG, van Laar JM. The diagnostic performance of dual energy CT for diagnosing gout: a systematic literature review and meta-analysis. Rheumatology. 2019;58(12):2117–21.

    Article  PubMed  Google Scholar 

  55. Pascart T, Norberciak L, Legrand J, Becce F, Budzik JF. Dual-energy computed tomography in calcium pyrophosphate deposition: initial clinical experience. Osteoarthr Cartil. 2019;27(9):1309–14.

    Article  CAS  Google Scholar 

  56. Budzik JF, Marzin C, Legrand J, Norberciak L, Becce F, Pascart T. Can dual-energy computed tomography be used to identify early calcium crystal deposition in the knees of patients with calcium pyrophosphate deposition? Arthritis Rheumatol. 2021;73(4):687–92.

    Article  CAS  PubMed  Google Scholar 

  57. Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: technical principles and clinical prospects. Radiology. 2018;289(2):293–312.

    Article  PubMed  Google Scholar 

  58. Chappard C, Abascal J, Olivier C, Si-Mohamed S, Boussel L, Piala JB, et al. Virtual monoenergetic images from photon-counting spectral computed tomography to assess knee osteoarthritis. Eur Radiol Exp. 2022;6(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bette SJ, Braun FM, Haerting M, Decker JA, Luitjens JH, Scheurig-Muenkler C, et al. Visualization of bone details in a novel photon-counting dual-source CT scanner-comparison with energy-integrating CT. Eur Radiol. 2022;32(5):2930–6.

    Article  CAS  PubMed  Google Scholar 

  60. Grunz J-P, Huflage H, Heidenreich JF, Ergün S, Petersilka M, Allmendinger T, et al. Image quality assessment for clinical cadmium telluride-based photon-counting computed tomography detector in cadaveric wrist imaging. Invest Radiol. 2021;56(12):785–90.

    Article  CAS  PubMed  Google Scholar 

  61. Segal NA, Bergin J, Kern A, Findlay C, Anderson DD. Test-retest reliability of tibiofemoral joint space width measurements made using a low-dose standing CT scanner. Skeletal Radiol. 2017;46(2):217–22.

    Article  PubMed  Google Scholar 

  62. Segal NA, Frick E, Duryea J, Nevitt MC, Niu J, Torner JC, et al. Comparison of tibiofemoral joint space width measurements from standing CT and fixed flexion radiography. J Orthop Res : Off Pub Orthop Res Soc. 2017;35(7):1388–95.

    Article  Google Scholar 

  63. Fritz B, Fritz J, Fucentese SF, Pfirrmann CWA, Sutter R. Three-dimensional analysis for quantification of knee joint space width with weight-bearing CT: comparison with non-weight-bearing CT and weight-bearing radiography. Osteoarthr Cartil. 2022;30(5):671–80.

    Article  CAS  Google Scholar 

  64. Segal NA, Frick E, Duryea J, Roemer F, Guermazi A, Nevitt MC, et al. Correlations of medial joint space width on fixed-flexed standing computed tomography and radiographs with cartilage and meniscal morphology on magnetic resonance imaging. Arthritis Care Res (Hoboken). 2016;68(10):1410–6.

    Article  CAS  PubMed  Google Scholar 

  65. Segal NA, Nevitt MC, Lynch JA, Niu J, Torner JC, Guermazi A. Diagnostic performance of 3D standing CT imaging for detection of knee osteoarthritis features. Phys Sportsmed. 2015;43(3):213–20.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Segal NA, Rabe KG, Lynch JA, Everist BM, Roemer F, Guermazi A. Detection of meniscal extrusion: comparison of standing computed tomography to non-loaded magnetic resonance imaging. Osteoarthr Cartil. 2018;26:S441–2.

    Article  Google Scholar 

  67. Jinzaki M, Yamada Y, Nagura T, Nakahara T, Yokoyama Y, Narita K, et al. Development of upright computed tomography with area detector for whole-body scans: phantom study, efficacy on workflow, effect of gravity on human body, and potential clinical impact. Invest Radiol. 2020;55(2):73–83.

    Article  PubMed  Google Scholar 

  68. Kaneda K, Harato K, Oki S, Yamada Y, Nakamura M, Nagura T, et al. Increase in tibial internal rotation due to weight-bearing is a key feature to diagnose early-stage knee osteoarthritis: a study with upright computed tomography. BMC Musculoskelet Disord. 2022;23(1):253.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hakukawa S, Kaneda K, Oki S, Harato K, Yamada Y, Niki Y, et al. Knee varus alters three-dimensional ankle alignment in standing- a study with upright computed tomography. BMC Musculoskelet Disord. 2022;23(1):321.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Malhotra K, Welck M, Cullen N, Singh D, Goldberg AJ. The effects of weight bearing on the distal tibiofibular syndesmosis: a study comparing weight bearing-CT with conventional CT. Foot Ankle Surg. 2019;25(4):511–6.

    Article  PubMed  Google Scholar 

  71. Gorbachova T, Melenevsky YV, Latt LD, Weaver JS, Taljanovic MS. Imaging and treatment of posttraumatic ankle and hindfoot osteoarthritis. J Clin Med. 2021;10(24):5848.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Krähenbühl N, Siegler L, Deforth M, Zwicky L, Hintermann B, Knupp M. Subtalar joint alignment in ankle osteoarthritis. Foot Ankle Surg. 2019;25(2):143–9.

    Article  PubMed  Google Scholar 

  73. Richter M, Lintz F, de Cesar NC, Barg A, Burssens A. Results of more than 11,000 scans with weightbearing CT - impact on costs, radiation exposure, and procedure time. Foot Ankle Surg. 2020;26(5):518–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TF mainly drafted the manuscript. TY, MJ, and HO contributed to editing the draft. TM, TK, and MJ contributed to literature survey and figure preparation. All author approved the final version of the manuscript before submission.

Corresponding author

Correspondence to Takeshi Fukuda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

CT is the best imaging modality for structural change evaluation in osteoarthritis. The three-dimensional analysis enables precise assessment of these changes in even anatomically complex joints.

CT has unique roles in OA research such as estimating the bone mineral density in subchondral area and semi-quantitative analysis of OA with the grading system.

Recent technical advances in CT, such as dual-energy CT, scanning with standing position, and photon-counting detector, may bring about new insight on OA in next decade.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, T., Yonenaga, T., Miyasaka, T. et al. CT in osteoarthritis: its clinical role and recent advances. Skeletal Radiol 52, 2199–2210 (2023). https://doi.org/10.1007/s00256-022-04217-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-022-04217-z

Keywords

Navigation