Skip to main content
Log in

G-quadruplex motifs in Neisseria gonorrhoeae as anti-gonococcal targets

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Neisseria gonorrhoeae is an obligate human pathogen that causes gonorrhea and has shown a vast emergence of multidrug resistance in recent times. It is necessary to develop novel therapeutic strategies to combat this multidrug-resistant pathogen. The non-canonical stable secondary structures of nucleic acids, G-quadruplexes (GQs), are reported to regulate gene expressions in viruses, prokaryotes, and eukaryotes. Herein, we explored the whole genome of N. gonorrhoeae to mine evolutionary conserved GQ motifs. The Ng-GQs were highly enriched in the genes involved in various important biological and molecular processes of N. gonorrhoeae. Five of these GQ motifs were characterized using biophysical and biomolecular techniques. The GQ-specific ligand, BRACO-19, showed a high affinity towards these GQ motifs and stabilized them in both in vitro and in vivo conditions. The ligand showed potent anti-gonococcal activity and modulated the gene expression of the GQ-harboring genes. Strikingly, BRACO-19 also altered the biofilm formation in N. gonorrhoeae and its adhesion and invasion of the human cervical epithelial cells. In summary, the present study showed a significant role of GQ motifs in N. gonorrhoeae biology and put forward a step closer towards the search for therapeutic measures in combating the emerging antimicrobial resistance in the pathogen.

Key points

Neisseria gonorrhoeae genome is enriched in non-canonical nucleic acid structures—G-quadruplexes.

These G-quadruplexes might regulate bacterial growth, virulence, and pathogenesis.

G-quadruplex ligands inhibit biofilm formation, adhesion, and invasion of the gonococcus bacterium.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34(9):2723–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arenas J, Catón L, van den Hoeven T, de Maat V, Cruz Herrero J, Tommassen J (2020) The outer-membrane protein MafA of Neisseria meningitidis constitutes a novel protein secretion pathway specific for the fratricide protein MafB. Virulence 11(1):1701–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 6(2):71–79

    Article  PubMed  Google Scholar 

  • Bedrat A, Lacroix L, Mergny J-L (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res 44(4):1746–1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhoopalan SV, Piekarowicz A, Lenz JD, Dillard JP, Stein DC (2016) nagZ triggers gonococcal biofilm disassembly. Sci Rep 6(1):22372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34(19):5402–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cebrián R, Belmonte-Reche E, Pirota V, de Jong A, Morales JC, Freccero M, Doria F, Kuipers OP (2022) G-Quadruplex DNA as a target in pathogenic bacteria: efficacy of an extended naphthalene diimide ligand and its mode of action. J Med Chem 65(6):4752–4766

    Article  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumetz F, Merrick CJ (2019) Parasitic protozoa: unusual roles for G-quadruplexes in early-diverging eukaryotes. Molecules 24(7):1339

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabelica V, Maeda R, Fujimoto T, Yaku H, Murashima T, Sugimoto N, Miyoshi D (2013) Multiple and cooperative binding of fluorescence light-up probe thioflavin T with human telomere DNA G-quadruplex. Biochemistry 52(33):5620–5628

    Article  CAS  PubMed  Google Scholar 

  • Ge SX, Jung D, Yao R (2019) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36(8):2628–2629

    Article  PubMed Central  Google Scholar 

  • Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, Benzler M, Hartig JS, Lukehart SA, Centurion-Lara A (2012) Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol 194(16):4208–4225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golparian D, Shafer WM, Ohnishi M, Unemo M (2014) Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 58(6):3556–3559

    Article  PubMed  PubMed Central  Google Scholar 

  • Greiner LL, Edwards JL, Shao J, Rabinak C, Entz D, Apicella MA (2005) Biofilm formation by Neisseria gonorrhoeae. Infect Immun 73(4):1964–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris LM, Merrick CJ (2015) G-quadruplexes in pathogens: a common route to virulence control? PLoS Pathog 11(2):e1004562

    Article  PubMed  PubMed Central  Google Scholar 

  • Holder IT, Hartig JS (2014) A matter of location: influence of G-quadruplexes on Escherichia coli gene expression. Chem Biol 21(11):1511–1521

    Article  CAS  PubMed  Google Scholar 

  • Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33(9):2908–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain N, Mishra SK, Shankar U, Jaiswal A, Sharma TK, Kodgire P, Kumar A (2020) G-quadruplex stabilization in the ions and maltose transporters gene inhibit Salmonella enterica growth and virulence. Genomics 112(6):4863–4874

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Shankar U, Kumar A (2022) Conserved G-quadruplex motifs regulate gene expression in Neisseria meningitidis. ACS Infect Dis 8(4):728–743

    Article  CAS  PubMed  Google Scholar 

  • Jamet A, Nassif X (2015) Characterization of the Maf family of polymorphic toxins in pathogenic Neisseria species. Microb Cell 2(3):88–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari N, Raghavan SC (2021) G-quadruplex DNA structures and their relevance in radioprotection. Biochim Biophys Acta Gen Subj 1865(5):129857

    Article  CAS  PubMed  Google Scholar 

  • Kuryavyi V, Cahoon LA, Seifert HS, Patel DJ (2012) RecA-binding pilE G4 sequence essential for pilin antigenic variation forms monomeric and 5′ end-stacked dimeric parallel G-quadruplexes. Structure 20(12):2090–2102

    Article  CAS  PubMed  Google Scholar 

  • Kwiatek A, Mrozek A, Bacal P, Piekarowicz A, Adamczyk-Popławska M (2015) Type III methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 regulates biofilm formation and interactions with human cells. Front Microbiol 6:1426

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin JN, Ball LM, Solomon TL, Dewald AH, Criss AK, Columbus L (2016) Neisserial Opa protein-CEACAM interactions: competition for receptors as a means of bacterial invasion and pathogenesis. Biochemistry 55(31):4286–4294

    Article  CAS  PubMed  Google Scholar 

  • Mishra SK, Tawani A, Mishra A, Kumar A (2016) G4IPDB: a database for G-quadruplex structure forming nucleic acid interacting proteins. Sci Rep 6:38144–38144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra SK, Jain N, Shankar U, Tawani A, Sharma TK, Kumar A (2019a) Characterization of highly conserved G-quadruplex motifs as potential drug targets in Streptococcus pneumoniae. Sci Rep 9(1):1791

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra SK, Shankar U, Jain N, Sikri K, Tyagi JS, Sharma TK, Mergny JL, Kumar A (2019b) Characterization of G-quadruplex motifs in espB, espK, and cyp51 genes of Mycobacterium tuberculosis as potential drug targets. Mol Ther Nucleic Acids 16:698–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukundan VT, Phan AT (2013) Bulges in G-quadruplexes: broadening the definition of G-quadruplex-forming sequences. J Am Chem Soc 135(13):5017–5028

    Article  CAS  PubMed  Google Scholar 

  • Pandya N, Bhagwat SR, Kumar A (2021) Regulatory role of non-canonical DNA polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 1876(2):188594

    Article  CAS  PubMed  Google Scholar 

  • Perrone R, Lavezzo E, Riello E, Manganelli R, Palù G, Toppo S, Provvedi R, Richter SN (2017) Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci Rep 7(1):5743

    Article  PubMed  PubMed Central  Google Scholar 

  • Platella C, Napolitano E, Riccardi C, Musumeci D, Montesarchio D (2021) Disentangling the Structure–activity relationships of naphthalene diimides as anticancer G-quadruplex-targeting drugs. J Med Chem 64(7):3578–3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin DH, Ross JD, Grad YH (2020) The frontiers of addressing antibiotic resistance in Neisseria gonorrhoeae. Transl Res 220:122–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero E, Richter SN (2018) G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res 46(7):3270–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafer WM, Datta A, Kumar Kolli VS, Mahbubur Rahman M, Balthazar JT, Martin LE, Veal WL, Stephens DS, Carlson R (2002) Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. J Endotoxin Res 8(1):47–58

    Article  CAS  PubMed  Google Scholar 

  • Shankar U, Jain N, Majee P, Kodgire P, Sharma TK, Kumar A (2020a) Exploring computational and biophysical tools to study the presence of G-quadruplex structures: a promising therapeutic solution for drug-resistant Vibrio cholerae. Front Genet 11:935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar U, Mishra SK, Jain N, Tawani A, Yadav P, Kumar A (2022) Ni(+2) permease system of Helicobacter pylori contains highly conserved G-quadruplex motifs. Infect Genet Evol 101:105298

    Article  CAS  PubMed  Google Scholar 

  • Shankar U, Jain N, Mishra SK, Sharma TK and Kumar A (2020b) Conserved G-quadruplex motifs in gene promoter region reveals a novel therapeutic approach to target multi-drug resistance Klebsiella pneumoniae. Front Microbiol 11(1269)

  • Srikhanta YN, Fox KL, Jennings MP (2010) The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol 8(3):196–206

    Article  CAS  PubMed  Google Scholar 

  • Unemo M, Lahra MM, Escher M, Eremin S, Cole MJ, Galarza P, Ndowa F, Martin I, Dillon JAR, Galas M, Ramon-Pardo P, Weinstock H, Wi T (2021) WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017–18: a retrospective observational study. The Lancet Microbe 2(11):e627–e636

    Article  CAS  PubMed  Google Scholar 

  • Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S (2020) The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Bio 21(8):459–474

    Article  CAS  Google Scholar 

  • Waller ZAE, Pinchbeck BJ, Buguth BS, Meadows TG, Richardson DJ, Gates AJ (2016) Control of bacterial nitrate assimilation by stabilization of G-quadruplex DNA. Chem Commun (camb) 52(92):13511–13514

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Thombre R, Shah Y, Latanich R, Wang J (2021) G-Quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Res 49(9):4816–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierzbicki IH, Zielke RA, Korotkov KV, Sikora AE (2017) Functional and structural studies on the Neisseria gonorrhoeae GmhA, the first enzyme in the glycero-manno-heptose biosynthesis pathways, demonstrate a critical role in lipooligosaccharide synthesis and gonococcal viability. Microbiologyopen 6(2):e00432

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav P, Kim N, Kumari M, Verma S, Sharma TK, Yadav V, Kumar A (2021) G-quadruplex structures in bacteria - biological relevance and potential as antimicrobial target. J Bacteriol 203(13):e00577-e520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Ouyang Y, Yao W (2018) shinyCircos: an R/shiny application for interactive creation of Circos plot. Bioinformatics 34(7):1229–1231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors here acknowledge the Sophisticated Instrumentation (SIC) Facility at the Indian Institute of Technology Indore for CD, Confocal and fluorescence microscopy experiments. The authors gratefully acknowledge the DST-FIST NMR facility at the Department of Chemistry, Indian Institute of Technology Indore, for recording the NMR spectra. The mTFP-pET43a+ plasmid was a kind gift from Dr. Prashant Kodgire, IIT Indore. NJ thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, India; US to the Ministry of Human Resource and Development (MHRD), New Delhi, India, and AS is thankful to the Department of Biotechnology, New Delhi, India, for their respective JRF/SRF fellowships.

Author information

Authors and Affiliations

Authors

Contributions

AK conceived and designed the experiments. NJ and US performed the experiments. AS performed NMR broadening. NJ, US, and AK analyzed the data and wrote the manuscript. TKS and AK proofread the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2730 KB)

Supplementary file2 (XLSX 232 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, N., Shankar, U., Singh, A. et al. G-quadruplex motifs in Neisseria gonorrhoeae as anti-gonococcal targets. Appl Microbiol Biotechnol 107, 5145–5159 (2023). https://doi.org/10.1007/s00253-023-12646-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12646-6

Keywords

Navigation