Skip to main content

Advertisement

Log in

Biotechnological interventions and indole alkaloid production in Rauvolfia serpentina

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rauvolfia serpentina (L). Benth. ex Kurz. (Apocynaceae), commonly known as Sarpagandha or Indian snakeroot, has long been used in the traditional treatment of snakebites, hypertension, and mental illness. The plant is known to produce an array of indole alkaloids such as reserpine, ajmaline, amalicine, etc. which show immense pharmacological and biomedical significance. However, owing to its poor seed viability, lesser germination rate and overexploitation for several decades for its commercially important bioactive constituents, the plant has become endangered in its natural habitat. The present review comprehensively encompasses the various biotechnological tools employed in this endangered Ayurvedic plant for its in vitro propagation, role of plant growth regulators and additives in direct and indirect regeneration, somatic embryogenesis and synthetic seed production, secondary metabolite production in vitro, and assessment of clonal fidelity using molecular markers and genetic transformation. In addition, elicitation and other methods of optimization of its indole-alkaloids are also described herewith.

Key points

Latest literature on in vitro propagation of Rauvolfia serpentina

Biotechnological production and optimization of indole alkaloids

Clonal fidelity and transgenic studies in R. serpentina

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahmad N, Alatar AA, Faisal M, Khan MI, Fatima N, Anis M, Hagezy AK (2015) Effect of copper and zinc on the in vitro regeneration of Rauvolfia serpentina. Biol Plant 59:11–17

    Article  CAS  Google Scholar 

  • Akram M, Ilahi I (1986) Plantlet formation in root callus of Rauwolfia serpentina. Pak J Bot 18:15–19

    CAS  Google Scholar 

  • Alatar AA (2015) Thidiazuron induced efficient in vitro multiplication and ex vitro conservation of Rauvolfia serpentina a potent antihypertensive drug producing plant. Biotechnol Biotechnol Equip 29:489–497

    Article  CAS  Google Scholar 

  • Alatar AA, Faisal M, Hegazy AK, Hend AA (2012) High frequency shoot regeneration and plant establishment of Rauvolfia serpentina: an endangered medicinal plant. J Med Plant Res 6:3324–3329

    CAS  Google Scholar 

  • Apana N, Amom T, Tikendra L, Potshangbam AM, Dey A, Nongdam P (2021) Genetic diversity and population structure of Clerodendrum serratum L Moon using CBDP, iPBS and SCoT markers. J Appl Res Medicinal Aromatic Plants 25:100349

    Article  CAS  Google Scholar 

  • Aryal S, Joshi SD (2009) Callus induction and plant regeneration in Rauvolfia Serpentina (L.) Benth Ex. Kurz J Nat Hist Mus 24:82–88

    Article  Google Scholar 

  • Bahuguna RN, Joshi R, Singh G, Shukla A, Gupta R, Bains G (2011) Micropropagation and total alkaloid extraction of Indian snake root (Rauwolfia serpentina). Indian J Agric Sci 81:1124–1129

    CAS  Google Scholar 

  • Baksha R, Jahan MAA, Khatun R, Munshi JL (2007) In vitro rapid clonal propagation of Rauvolfia serpentina (Linn.) Benth. Bangladesh J Sci Ind Res 42:37–44

    Article  Google Scholar 

  • Benjamin BD, Roja G, Heble MR (1993) Agrobacterium rhizogenes mediated transformation of Rauvolfia serpentina: regeneration and alkaloid synthesis. Plant Cell Tissue Organ Cult 35:253–257

    Article  CAS  Google Scholar 

  • Bhadra SK, Bhowmik TK, Singh P (2008) In vitro micropropagation of Rauvolfia serpentina (L.) Benth through induction of direct and indirect organogenesis. Chittagong Univ J Biol Sci 3:1–9

    Google Scholar 

  • Bhagat NR, Mital SP, Hardas MW (1980) Variation in Rauvolfia serpentina genetic resources in India. Euphytica 29:747–750

    Article  Google Scholar 

  • Dey A, De JN (2021) Ethnobotanical aspects of Rauvolfia serpentina (L). Benth. ex Kurz. in India, Nepal and Bangladesh. J Med Plant Rese 5:144–150

    Google Scholar 

  • Dey A, De JN (2010) Rauvolfia serpentina (L). Benth. ex Kurz.-a review. Asian J Plant Sci 9:285–298

    Article  Google Scholar 

  • Dey A, Hazra AK, Nongdam P, Nandy S, Tikendra L, Mukherjee A, Banerjee S, Mukherjee S, Pandey DK (2019) Enhanced bacoside content in polyamine treated in-vitro raised Bacopa monnieri (L.) Wettst. South Afr J Bot 123:259–269

    Article  CAS  Google Scholar 

  • Dey A, Mukherjee S, De A, Pandey DK (2016) A stigmasterol containing n-hexane fraction of Rauvolfia serpentina methanolic extract shows tissue-specific variation of biocidal and antioxidant activities. J Herbs Spices Med Plant 22:81–91

    Article  CAS  Google Scholar 

  • Dey A, Nandy S, Nongdam P, Tikendra L, Mukherjee A, Mukherjee S, Pandey DK (2020) Methyl jasmonate and salicylic acid elicit indole alkaloid production and modulate antioxidant defence and biocidal properties in Rauvolfia serpentina Benth. ex Kurz. in vitro cultures. South Afr J Bot 135:1–7

    Article  CAS  Google Scholar 

  • Dey A, De Nath J (2012) Anti–snake venom botanicals used by the ethnic groups of Purulia District, West Bengal, India. J Herbs Spices Med Plant 18:152–165

    Article  Google Scholar 

  • Dey A, Pandey DK (2014) HPTLC detection of altitudinal variation of the potential antivenin stigmasterol in different populations of the tropical ethnic antidote Rauvolfia serpentina. Asian Pac J Trop Med 7:S540–S545

    Article  CAS  Google Scholar 

  • Dey A, Pandey DK (2014) HPTLC method for quantitative evaluation of seasonal variation of stigmasterol in Rauvolfia serpentina (L). Benth. ex Kurz. J Biol Active Prod Nat 4:254–261

    CAS  Google Scholar 

  • Faisal M, Alatar AA, Ahmed N, Anis M, Hegazy AK (2012) Assessment of genetic fidelity in Rauvolfia serpentina plantlets grown from synthetic (encapsulated) seeds following in vitro storage at 4 °C. Molecules 17:5050–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gantait S, Kundu S (2017) Does synthetic seed storage at higher temperature reduce reserpine content of Rauvolfia serpentina (L.) Benth. Ex Kurz.? Rend Lincei Sci Fis Nat 28:679–686

    Article  Google Scholar 

  • Gantait S, Kundu S, Yeasmin L, Ali MN (2017) Impact of differential levels of sodium alginate, calcium chloride and basal media on germination frequency of genetically true artificial seeds of Rauvolfia serpentina (L.) Benth. Ex Kurz. J Appl Res Med Arom Plant 4:75–81

    Google Scholar 

  • Gantait SS, Dutta K, Majumdar J (2017) In vitro regeneration and conservation of endangered medicinal plant sarpagandha (Rauvolfia serpentina). J Hortic Sci 12:71–77

    Google Scholar 

  • Goel MK, Goel S, Banerjee S, Shanker K, Kukreja AK (2010) Agrobacterium rhizogenes mediated transformed roots of Rauwolfia serpentina for reserpine biosynthesis. Med Arom Plant Sci Biotechnol 4:8–14

    Google Scholar 

  • Goel MK, Mehrotra S, Kukreja AK, Shanker K, Khanuja SPS (2009) In vitro propagation of Rauwolfia serpentina using liquid medium, assessment of genetic fidelity of micropropagated plants, and simultaneous quantitation of reserpine, ajmaline, and ajmalicine. In: Jain SM, Saxena PK (eds) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Methods in Molecular Biology (Methods and Protocols), vol 547. Humana Press, Totowa, pp 17–33

  • Harisaranraj R, Suresh K, Babu SS (2009) Production of reserpine in somatic embryos of Rauwolfia serpentina cultured in bioreactors by the induction of elicitor (methyl Jasmonate). Glob J Biotechnol Biochem 4:143–147

    CAS  Google Scholar 

  • Ilahi I, Rahim F, Jabeen M (2007) Enhanced clonal propagation and alkaloid biosynthesis in cultures of Rauwolfia. Pak J Plant Sci 13:45–56

    Google Scholar 

  • Jain V, Singh D, Saraf S, Saraf S (2003) In-vitro micropropagation of Rauwolfia serpentina through multiple shoot generation. Anc Sci Life 23:44–49

    PubMed  PubMed Central  Google Scholar 

  • Jayaprakash K, Manokari M, Badhepuri MK, Raj MC, Dey A, Shekhawat MS (2021) Influence of meta-topolin on in vitro propagation and foliar micro-morpho-anatomical developments of Oxystelma esculentum (Lf) Sm. Plant Cell Tissue Organ Cul 147:325–337

    Article  CAS  Google Scholar 

  • Kataria V, Shekhawat NS (2005) Cloning of Rauvolfia serpentina – an endangered medicinal plant. J Sustain for 20:53–65

    Article  Google Scholar 

  • Kaur P, Pandey DK, Gupta RC, Dey A (2019a) Assessment of genetic diversity among different population of five Swertia species by using molecular and phytochemical markers. Ind Crop Prod:111569.

  • Kaur P, Pandey DK, Gupta RC, Kumar V, Dwivedi P, Sanyal R, Dey A (2021) Biotechnological interventions and genetic diversity assessment in Swertia sp.: a myriad source of valuable secondary metabolites. Appl Microbiol Biotechnol 105:4427–4451

    Article  CAS  PubMed  Google Scholar 

  • Kaur S (2018) In vitro callus induction in inflorescence segments of medicinally important endangered plant Rauwolfia serpentina (L.) Benth. ex Kurz – a step towards ex situconservation. Ann Plant Sci 7:1988–1991

    CAS  Google Scholar 

  • Khan S, Banu TA, Akhter S, Goswami B, Islam M, Hani U, Habib A (2018) In vitro regeneration protocol of Rauvolfia serpentina L. Bangladesh J Sci Ind Res 53:133–138

    Article  CAS  Google Scholar 

  • Kirillova NV, Smirnova MG, Komov VP (2001) Sequential isolation of superoxide dismutase and ajmaline from tissue culture of Rauwolfia serpentina Benth. Appl Biochem Microbiol 37:160–163

    Article  CAS  Google Scholar 

  • Kisku P, Sahu US, Saha P, Kundu S, Ali M (2020) Encapsulation-dehydration based cryopreservation of Rauwolfia shoot tips and their regeneration potential in vitro. J Crop Weed 16:82–87

    Article  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by shoot tip culture. Int Plant Prop Soc Proc 30:421–427

    Google Scholar 

  • Madhusudanan KP, Banerjee S, Khanuja SP, Chattopadhyay SK (2008) Analysis of hairy root culture of Rauvolfia serpentina using direct analysis in real time mass spectrometric technique. Biomed Chromatograph 22:596–600

    Article  CAS  Google Scholar 

  • Mallick SR, Jena RC, Samal KC (2012) Rapid in vitro multiplication of an endangered medicinal plant sarpgandha (Rauwolfia serpentina). Am J Plant Sci 3:437–442

    Article  CAS  Google Scholar 

  • Mallick SR, Samal P, Jena RC, Samal KC (2013) Alkaloid profiling of conventionally propagated and in vitro raised plants of Indian snake plant (Rauwolfia serpentina L.). Asian J Chem 25:6584–6586

    Article  CAS  Google Scholar 

  • Manokari M, Badhepuri MK, Cokulraj M, Dey A, Rajput VD, Minkina T, Shekhawat MS (2021) Differential morphometric and micro-morpho-anatomical responses toward types of culture vessels used in micropropagation of Hemidesmus indicus (L.) R. Br Plant Cell Tissue Organ Cul 148:439–446

    Article  CAS  Google Scholar 

  • Manokari M, Mehta SR, Priyadharshini S, Badhepuri MK, Dulam S, Jayaprakash K, Dey A, Rajput BS, Shekhawat MS (2021) Meta-topolin mediated improved micropropagation, foliar micro-morphological traits, biochemical profiling, and assessment of genetic fidelity in Santalum album L. Ind Crops Prod 171:113931

    Article  CAS  Google Scholar 

  • Manokari M, Priyadharshini S, Cokulraj M, Dey A, Shekhawat MS (2021) Meta-topolin induced morphometric and structurally stable bulblets in Malabar River Lily (Amaryllidaceae). Plant Cell Tissue Organ Cul 148:377–385

    Article  CAS  Google Scholar 

  • Manokari M, Priyadharshini S, Jogam P, Dey A, Shekhawat MS (2021) Meta-topolin and liquid medium mediated enhanced micropropagation via ex vitro rooting in Vanilla planifolia Jacks. ex Andrews. Plant Cell Tissue Organ Cul 146:69–82

    Article  CAS  Google Scholar 

  • Mathur A, Mathur AK, Kukreja AK, Ahuja PS, Tyagi BR (1987) Establishment and multiplication of colchi-tetraploids of Rauvolfia serpentina L. Benth. ex Kurz. through tissue culture. Plant Cell Tissue Organ Cult 10:129–134

    Article  CAS  Google Scholar 

  • Mishra Y, Usmani G, Mandal AK (2010) In vitro cloning of Rauvolfia serpentina (L.) Benth. var. CIM-Sheel and evaluation of its field performance. J Biol Res-Thessaloniki 13:85–92

    CAS  Google Scholar 

  • Mondal S, Texeirada da Silva JA, Ghosh PD (2011) In vitro flowering in Rauvolfia serpentina (L.) Benth. ex. Kurz Int J Plant Dev Biol 5:75–77

    Google Scholar 

  • Mukherjee E, Gantait S, Kundu S, Sarkar S, Bhattacharyya S (2019) Biotechnological interventions on the genus Rauvolfia: recent trends and imminent prospects. Appl Microbio Biotech 103:7325–7354

    Article  CAS  Google Scholar 

  • Mukherjee E, Sarkar S, Bhattacharyya S, Gantait S (2020) Ameliorated reserpine production via in vitro direct and indirect regeneration system in Rauvolfia serpentina (L.) Benth. ex Kurz. 3 Biotech 10:1–14

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–495

    Article  CAS  Google Scholar 

  • Nandy S, Das T, Tudu CK, Mishra T, Ghorai M, Gadekar VS, Anand U, Kumar M, Behl T, Shaikh NK, Jha NK, Shekhawat MS, Pandey DK, Dwivedi P, Radha Dey A (2021) Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology, transgenics and secondary metabolomics. Appl Microbio Biotech 106:905–929

    Article  CAS  Google Scholar 

  • Nandy S, Hazra AK, Pandey DK, Ray P, Dey A (2021) Elicitation of industrially promising vanillin type aromatic compound 2-hydroxy 4-methoxy benzaldehyde (MBAlD) yield in the in-vitro raised medicinal crop Hemidesmus indicus (L) R. Br. by methyl jasmonate and salicylic acid. Ind Crops Prod 164:113375

    Article  CAS  Google Scholar 

  • Nandy S, Singh J, Pandey DK (2020) Dey A (2020) Hemidesmus indicus L. Br.: critical assessment of in vitro biotechnological advancements and perspectives. Appl Microbio Biotech 10:1–32

    Google Scholar 

  • Nazir R, Gupta S, Dey A, Kumar V, Gupta AP, Shekhawat MS, Goyal P, Pandey DK (2022) In vitro tuberization, genetic, and phytochemical fidelity assessment of Dioscorea deltoidea. Ind Crops Prod 175:114174

    Article  CAS  Google Scholar 

  • Nazir R, Gupta S, Dey A, Kumar V, Yousuf M, Hussain S, Dwivedi P, Pandey DK (2021) In vitro propagation and assessment of genetic fidelity in Dioscorea deltoidea, a potent diosgenin yielding endangered plant. South Afr J Bot 140:349–355

    Article  CAS  Google Scholar 

  • Nazir R, Kumar V, Gupta S, Dwivedi P, Pandey DK, Dey A (2021) Biotechnological strategies for the sustainable production of diosgenin from Dioscorea spp. Appl Microbio Biotech 105:569–585

    Article  CAS  Google Scholar 

  • Nurcahyani N, Solichatun AE (2008) The reserpine production and callus growth of Indian snake root (Rauvolfia serpentina (L.) Benth. Ex Kurz) culture by addition of Cu2+. Biodiversitas 9:177–179

    Article  Google Scholar 

  • Pan S, Neeraj A, Srivastava KS, Kishore P, Sarethy IP (2013) Effects of growth regulators on in vitro response and multiple shoot induction in some endangered medicinal plants. OA Biotechnol 2:3

    Article  Google Scholar 

  • Pandey DK, Konjengbam M, Dwivedi P, Kaur P, Kumar V, Ray D, Ray P, Nazir R, Kaur H, Parida S, Dey A (2021) Biotechnological interventions of in vitro propagation and production of valuable secondary metabolites in Stevia rebaudiana. Appl Microbio Biotech 105:8593–8614

    Article  CAS  Google Scholar 

  • Pandey DK, Radha DA (2016) A validated and densitometric HPTLC method for the simultaneous quantification of reserpine and ajmalicine in Rauvolfia serpentina and Rauvolfia tetraphylla. Revis Brasil Farmacogn 26:553–557

    Article  CAS  Google Scholar 

  • Pandey VP, Kudakasseril J, Cherian E, Patani G (2007) Comparison of two methods for in vitro propagation of Rauwolfia serpentina from nodal explants. Indian Drugs 44:514–519

    Article  Google Scholar 

  • Pant KK, Joshi SD (2008) Rapid multiplication of Rauvolfia serpentina Benth. ex. Kurz through tissue culture. Sci World J 6:58–62

    Article  Google Scholar 

  • Pant KK, Joshi SD (2018) In-vitro somatic embryogenesis and organogenesis from the node induced calli of Rauvolfia serpentina Benth. ex Kurz. Nep J Agric Sci 17:167–173

    Google Scholar 

  • Panwar GS, Attitalla IH, Guru SK (2011) An efficient in vitro clonal propagation and estimation of reserpine content in different plant parts of Rauwolfia serpentina L. Am-Eur J Sci Res 6:217–222

    CAS  Google Scholar 

  • Panwar GS, Attitalla IH, Guru SK (2011) An efficient in vitro clonal propagation and estimation reserpine content in different plant parts of Rauwolfia serpentina L. Am-Eur J Sci Res 6:217–222

    CAS  Google Scholar 

  • Panwar GS, Guru SK (2015) Stimulation of reserpine production in the whole plant culture of Rauwolfia serpentina L. by elicitors and precursor feeding. J Plant Biochem Biotechnol 24:49–55

    Article  CAS  Google Scholar 

  • Rajasekharan PE, Ambika SR, Ganeshan S (2007) In vitro regeneration and slow growth studies on Rauvolfia serpentina. IUP J Biotechnol 1:63–67

    Google Scholar 

  • Rana SK, Sehrawat AR, Chowdhury VR (2015) Assessment of clonal fidelity in micropropagated plantlets of Rauwolfia serpentina Benth. Ex Kurz Med Plant 7:258–263

    Google Scholar 

  • Rani A, Kumar M, Kumar S (2014) Effect of growth regulators on micropropagation of Rauvolfia serpentina (L.) Benth. J Appl Nat Sci 6:507–511

    Article  Google Scholar 

  • Rani A, Kumar M, Kumar S (2014) Micropropagation of serpgandha (Rauvolfia serpentina L. Benth). An endangered medicinal plant. Appl Biol Res 16:114–118

    Article  Google Scholar 

  • Rashmi R, Trivedi MP (2016) Rapid in-vitro regeneration of an endangered medicinal plant sarpagandha (Rauvolfia serpentina L.). Eur J Pharm Med Res 3:276–284

    Google Scholar 

  • Ray S, Majumdar A, Bandyopadhyay M, Jha S (2014) Genetic transformation of sarpagandha (Rauvolfia serpentina) with Agrobacterium rhizogenes for identification of high alkaloid yielding lines. Acta Physiol Plant 36:1599–1605

    Article  CAS  Google Scholar 

  • Ray S, Samanta T, Majumdar A, Bandyopadhyay M, Jha S (2014) Cytogenetic characterization of Agrobacterium rhizogenes transformed root lines of Rauvolfia serpentina. Nucleus 57:105–112

    Article  Google Scholar 

  • Reddy GS, Kumar DD, Srihari BR, Madhavi M (2006) Callus culture and synthetic seed production of Rauvolfia serpentina. Ind J Hort 62:102–103

    Google Scholar 

  • Roja G, Heble MR (1996) Indole alkaloids in clonal propagules of Rauwolfia serpentina Benthe. ex Kurz. Plant Cell Tissue Organ Cult 44:111–115

    Article  CAS  Google Scholar 

  • Roja PC, Sipahimalani AT, Heble MR, Chadha MS (1987) Multiple shoot cultures of Rauvolfia serpentina: growth and alkaloid production. J Nat Prod 50:872–887

    Article  CAS  Google Scholar 

  • Sarker KP, Islam A, Islam R, Hoque A, Joarder OI (1996) In vitro propagation of Rauvolfia serpentina through tissue culture. Planta Med 62:358–359

    Article  CAS  PubMed  Google Scholar 

  • Sarma D, Kukreja AK, Baruah A (1997) Transforming ability of two Agrobacterium rhizogenes strains in Rauvolfia serpentina (L.) leaves. Ind J Plant Physiol 2:166–168

    Google Scholar 

  • Senapati SK, Lahere N, Tiwary BN (2014) Improved in vitro clonal propagation of Rauwolfia serpentina L. Benth – an endangered medicinal plant. Plant Biosyst 148:885–888

    Article  Google Scholar 

  • Shahnawaz PP, Kaur R, Singh S, Chattopadhyay SK, Srivastava SK, Banerjee S (2014) Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism. Biotechnol Lett 36:1523–1528

    Article  CAS  Google Scholar 

  • Shekhawat MS, Mehta SR, Manokari M, Priyadharshini S, Badhepuri MK, Jogam P, Dey A, Rajput BS (2021) Morpho-anatomical and physiological changes of Indian sandalwood (Santalum album L.) plantlets in ex vitro conditions to support successful acclimatization for plant mass production. Plant Cell Tissue Organ Cul 147:423–435

    Article  CAS  Google Scholar 

  • Singh P, Singh A, Shukla AK, Singh L, Pande V, Nailwal TK (2009) Somatic embryogenesis and in vitro regeneration of an endangered medicinal plant sarpgandha (Rauvolfia serpentina L.). Life Sci J 6:57–62

    Google Scholar 

  • Sudha CG, Reddy BO, Ravishankar GA, Seeni S (2003) Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnol Lett 25:631–636

    Article  CAS  PubMed  Google Scholar 

  • Sudha CG, Seeni S (2006) Spontaneous somatic embryogenesis on in vitro root segment cultures of Rauvolfia micrantha hook. f. – a rare medicinal plant. In Vitro Cell Dev Biol Plant 42:119–123

    Article  Google Scholar 

  • Susila T, Reddy GS, Jyothsna D (2013) Standardization of protocol for in vitro propagation of an endangered medicinal plant Rauwolfia serpentina Benth. J Med Plant Res 7:2150–2153

    Article  CAS  Google Scholar 

  • Susila T, Reddy GS, Jyothsna D (2014) Standardization of protocol for in vitro propagation of Rauwolfia serpentina Benth. Progress Hortic 46:285–287

    Google Scholar 

  • Swamy MK, Nath S, Paul S, Jha NK, Purushotham B, Rohit KC, Dey A (2021) Biotechnology of camptothecin production in Nothapodytes nimmoniana. Ophiorrhiza sp and Camptotheca acuminata Appl Microbio Biotech 105:9089–9102

    Article  CAS  Google Scholar 

  • Tikendra L, Potshangbam AM, Amom T, Dey A, Nongdam P (2021) Understanding the genetic diversity and population structure of Dendrobium chrysotoxum Lindl.-an endangered medicinal orchid and implication for its conservation. South Afr J Bot 138:364–376

    Article  CAS  Google Scholar 

  • Tikendra L, Potshangbam AM, Dey A, Devi TR, Sahoo MR, Nongdam P (2021) RAPD, ISSR, and SCoT markers based genetic stability assessment of micropropagated Dendrobium fimbriatum Lindl. var. oculatum Hk. f.-an important endangered orchid. Physiol Mol Biol Plant 27:341–357

    Article  CAS  Google Scholar 

  • Uikey DS, Tripathi MK, Tiwari G, Patel RP, Ahuja A (2016) Embryogenic cell suspension culture induction and plantlet regeneration of Rauvolfia serpentina (L.) Benth.: influence of different plant growth regulator concentrations and combinations. Med Plant 8:153–162

    Google Scholar 

  • White PR (1963) The cultivation of animal and plant cells, 2nd edn. Ronald Press Co., New York, pp 228–229

    Google Scholar 

  • Yahya AF, Hyun JO, Lee JH, Jung MS (2007) Effect of explants types, auxin concentration, and light condition on in vitro root production and alkaloid content of Rauvolfia serpentina (L.) Benth. ex. Kurz J Korean for Soc 96:178–182

    Google Scholar 

  • Yamamoto O, Yamada Y (1986) Production of Reserpine and its optimization in cultured Rauwolfia serpentina Benth. cells. Plant Cell Rep 5:50–53

    Article  CAS  PubMed  Google Scholar 

  • Zafar N, Mujib A, Ali M, Tonk D, Gulzar B (2017) Aluminium chloride elicitation (amendment) improves callus biomass growth and reserpine yield in Rauvolfia serpentina leaf callus. Plant Cell Tissue Organ Cult 130:357–368

    Article  CAS  Google Scholar 

  • Zafar N, Mujib A, Ali M, Tonk D, Gulzar B, Malik M, Sayeed R, Mamgain J (2019) Genome size analysis of field grown and tissue culture regenerated Rauvolfia serpentina (L) by flow cytometry: histology and scanning electron microscopic study for in vitro morphogenesis. Ind Crop Prod 128:545–555

    Article  CAS  Google Scholar 

  • Zafar N, Mujib A, Ali M, Tonk D, Gulzar B, Malik MQ, Mamgain J, Sayeed R (2020) Cadmium chloride (CdCl2) elicitation improves reserpine and ajmalicine yield in Rauvolfia serpentina as revealed by high-performance thin-layer chromatography (HPTLC). 3 Biotech 10:1–4.

Download references

Author information

Authors and Affiliations

Authors

Contributions

AD, DR, VMM, and MG conceptualized designed review. MHR, UA, and SD prepared the primary draft. R and MK conducted the literature survey. DAP, NKJ, and SKJ contributed figures or analytical tools. MSS and DKP analyzed and finalized the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Abhijit Dey or Devendra Kumar Pandey.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, A., Roy, D., Mohture, V.M. et al. Biotechnological interventions and indole alkaloid production in Rauvolfia serpentina. Appl Microbiol Biotechnol 106, 4867–4883 (2022). https://doi.org/10.1007/s00253-022-12040-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-12040-8

Keywords

Navigation