Skip to main content
Log in

Development and biochemical characterization of the monoclonal antibodies for specific detection of the emerging H5N8 and H5Nx avian influenza virus hemagglutinins

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The highly pathogenic avian influenza (HPAI) H5N8 virus has been detected in wild birds and poultry worldwide. The threat caused by HPAI H5N8 virus still exists with concerns for human infection. The preparedness for epidemic prevention and decreasing the agricultural and economic lost is extremely important. Hemagglutinin (HA), a surface glycoprotein of influenza viruses, is considered as the major target for detection of the influenza virus subtype in the infected samples. In this study, the recombinant H5N8 HA1 and HA2 proteins were expressed in Escherichia coli, and were utilized to generate two monoclonal antibodies, named 7H6C and YC8. 7H6C can bind the HA proteins of H5N1 and H5N8, but cannot bind the HA proteins of H1N1, H3N2, and H7N9, indicating that it has H5-subtype specificity. In contrast, YC8 can bind the HA proteins of H1N1, H5N1, and H5N8, but cannot bind the HA proteins of H3N2 and H7N9, indicating that it has H1-subtype and H5-subtype specificity. The epitope sequences recognized by 7H6C are located in the head domain of H5N8 HA, and are highly conserved in H5 subtypes. The epitope sequences recognized by YC8 are located in the stalk domain of H5N8 HA, and are highly conserved among the H1 and H5 subtypes. 7H6C and YC8 can be applied for specific detection of the HA proteins of H5N8 and H5Nx avian influenza viruses.

Key points

• The mAb 7H6C or YC8 was generated by using the HA1 or HA2 of the HPAI H5N8 virus as the immunogen.

• 7H6C recognized the head domain of H5N8 HA, and YC8 recognized the stalk domain of H5N8 HA.

• 7H6C and YC8 can detect the HA proteins of H5Nx subtypes specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All plasmids and mAbs generated in the study are available from the corresponding author on reasonable request.

References

  • Antigua KJC, Choi WS, Baek YH, Song MS (2019) The emergence and decennary distribution of clade 2.3.4.4 HPAI H5Nx. Microorganisms 7(6):156

    Article  PubMed Central  Google Scholar 

  • Bender C, Hall H, Huang J, Klimov A, Cox N, Hay A, Gregory V, Cameron K, Lim W, Subbarao K (1999) Characterization of the surface proteins of influenza A (H5N1) viruses isolated from humans in 1997-1998. Virology 254(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Chang SC, Wu CC, Cuo TS, Wu JS, Juang RH (2002) Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis. Physiol Plant 114(4):506–515

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Chen CH, Wang CH (2008) H5 antibody detection by blocking enzyme-linked immunosorbent assay using a monoclonal antibody. Avian Dis 52(1):124–129

    Article  PubMed  Google Scholar 

  • Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351(9101):472–477

    Article  CAS  PubMed  Google Scholar 

  • Cui S, Tong G (2008) A chromatographic strip test for rapid detection of one lineage of the H5 subtype of highly pathogenic avian influenza. J Vet Diagn Investig 20(5):567–571

    Article  Google Scholar 

  • Dhingra MS, Artois J, Robinson TP, Linard C, Chaiban C, Xenarios I, Engler R, Liechti R, Kuznetsov D, Xiao X, Dobschuetz SV, Claes F, Newman SH, Dauphin G, Gilbert M (2016) Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation. eLife 5:e19571

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunand CJH, Leon PE, Huang M, Choi A, Chromikova V, Ho IY, Tan GS, Cruz J, Hirsh A, Zheng NY, Mullarkey CE, Ennis FA, Terajima M, Treanor JJ, Topham DJ, Subbarao K, Palese P, Krammer F, Wilson PC (2016) Both neutralizing and non-neutralizing human H7N9 influenza vaccine-induced monoclonal antibodies confer protection. Cell Host Microbe 19(6):800–813

    Article  CAS  Google Scholar 

  • Ehrhardt C, Seyer R, Hrincius ER, Eierhoff T, Wolff T, Ludwig S (2010) Interplay between influenza A virus and the innate immune signaling. Microbes Infect 12(1):81–87

    Article  CAS  PubMed  Google Scholar 

  • Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324(5924):246–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafouri SA, GhalyanchiLangeroudi A, Maghsoudloo H, Kh Farahani R, Abdollahi H, Tehrani F, Fallah MH (2017) Clade 2.3.4.4 avian influenza A (H5N8) outbreak in commercial poultry, Iran, 2016: the first report and update data. Trop Anim Health Prod 49(5):1089–1093

    Article  PubMed  Google Scholar 

  • Guan Y, Peiris JS, Lipatov AS, Ellis TM, Dyrting KC, Krauss S, Zhang LJ, Webster RG, Shortridge KF (2002) Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 99(13):8950–8955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harfoot R, Webby RJ (2017) H5 influenza, a global update. J Microbiol 55(3):196–203

    Article  PubMed  Google Scholar 

  • He Q, Velumani S, Du Q, Lim CW, Ng FK, Donis R, Kwang J (2007) Detection of H5 avian influenza viruses by antigen-capture enzyme-linked immunosorbent assay using H5-specific monoclonal antibody. Clin Vaccine Immunol 14(5):617–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu CJ, Chien CY, Liu MT, Fang ZS, Chang SY, Juang RH, Chang SC, Chen HW (2017) Multi-antigen avian influenza A (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol 17(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim YI, Pascua PN, Kwon HI, Lim GJ, Kim EH, Yoon SW, Park SJ, Kim SM, Choi EJ, Si YJ, Lee OJ, Shim WS, Kim SW, Mo IP, Bae Y, Lim YT, Sung MH, Kim CJ, Webby RJ, Webster RG, Choi YK (2014) Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerg Microbes Infect 3(10):e75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DH, Bertran K, Kwon JH, Swayne DE (2017) Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J Vet Sci 18(S1):269–280

    Article  PubMed  PubMed Central  Google Scholar 

  • Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD, Estoepangestie AT, Chaisingh A, Auewarakul P, Long HT, Hanh NT, Webby RJ, Poon LL, Chen H, Shortridge KF, Yuen KY, Webster RG, Peiris JS (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430(6996):209–213

    Article  CAS  PubMed  Google Scholar 

  • Li M, Liu H, Bi Y, Sun J, Wong G, Liu D, Li L, Liu J, Chen Q, Wang H, He Y, Shi W, Gao GF, Chen J (2017) Highly pathogenic avian influenza A(H5N8) virus in wild migratory birds, Qinghai Lake, China. Emerg Infect Dis 23(4):637–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Mair CM, Ludwig K, Herrmann A, Sieben C (2014) Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta 1838(4):1153–1168

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan S, Kumar M, Murugkar HV, Tripathi S, Shukla S, Agarwal S, Dubey G, Nagi RS, Singh VP, Tosh C (2017) Novel reassortant highly pathogenic avian influenza (H5N8) virus in zoos, India. Emerg Infect Dis 23(4):717–719

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunez IA, Ross TM (2019) A review of H5Nx avian influenza viruses. Ther Adv Vaccines Immunother 7:2515135518821625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkawara A, Okamatsu M, Ozawa M, Chu DH, Nguyen LT, Hiono T, Matsuno K, Kida H, Sakoda Y (2017) Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3.4.4 isolated in Asia. Microbiol Immunol 61(5):149–158

    Article  CAS  PubMed  Google Scholar 

  • Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, Fouchier RA (2006) Global patterns of influenza A virus in wild birds. Science 312(5772):384–388

    Article  CAS  PubMed  Google Scholar 

  • Pohlmann A, Starick E, Harder T, Grund C, Hoper D, Globig A, Staubach C, Dietze K, Strebelow G, Ulrich RG, Schinkothe J, Teifke JP, Conraths FJ, Mettenleiter TC, Beer M (2017) Outbreaks among wild birds and domestic poultry caused by reassorted influenza A(H5N8) clade 2.3.4.4 viruses, Germany, 2016. Emerg Infect Dis 23(4):633–636

    Article  PubMed  PubMed Central  Google Scholar 

  • Selim AA, Erfan AM, Hagag N, Zanaty A, Samir AH, Samy M, Abdelhalim A, Arafa AA, Soliman MA, Shaheen M, Ibraheem EM, Mahrous I, Hassan MK, Naguib MM (2017) Highly pathogenic avian influenza virus (H5N8) clade 2.3.4.4 infection in migratory birds, Egypt. Emerg Infect Dis 23(6):1048–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GJ, Donis RO, World Health Organization/World Organisation for Animal HF, Agriculture Organization HEWG (2015) Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013-2014. Influenza Other Respir Viruses 9(5):271–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinhauer DA (1999) Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Tan GS, Krammer F, Eggink D, Kongchanagul A, Moran TM, Palese P (2012) A pan-H1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J Virol 86(11):6179–6188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tate MD (2018) Highly pathogenic avian H5N8 influenza viruses: should we be concerned? Virulence 9(1):20–21

    Article  CAS  PubMed  Google Scholar 

  • Throsby M, van den Brink E, Jongeneelen M, Poon LL, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, Cinatl J, ter Meulen J, Lasters I, Carsetti R, Peiris M, de Kruif J, Goudsmit J (2008) Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3(12):e3942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuda Y, Sakoda Y, Sakabe S, Mochizuki T, Namba Y, Kida H (2007) Development of an immunochromatographic kit for rapid diagnosis of H5 avian influenza virus infection. Microbiol Immunol 51(9):903–907

    Article  CAS  PubMed  Google Scholar 

  • Wan XF (2012) Lessons from emergence of A/goose/Guangdong/1996-like H5N1 highly pathogenic avian influenza viruses and recent influenza surveillance efforts in southern China. Zoonoses Public Health 59(s2):32–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Subbarao CNJ, Guo Y (1999) Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Yamaji R, Saad MD, Davis CT, Swayne DE, Wang D, Wong FYK, McCauley JW, Peiris JSM, Webby RJ, Fouchier RAM, Kawaoka Y, Zhang W (2020) Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev Med Virol 30(3):e2099

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the excellent technical assistance from Technology Commons, College of Life Science, National Taiwan University.

Funding

This work was supported by grants from the Ministry of Science and Technology, Taiwan (MOST108-2313-B-002-011 and MOST107-2313-B-002-045).

Author information

Authors and Affiliations

Authors

Contributions

YCC and SCC conceived and designed research. SCC acquired funds and conducted experiments. YCC and SCC analyzed data. SCC wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Shih-Chung Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The animal experiment was approved by the Institutional Animal Care and Use Committee (IACUC) of National Taiwan University (IACUC Approval Number: NTU-107-EL-00023) and implemented in accordance with the animal care and ethics guidelines. The article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YC., Chang, SC. Development and biochemical characterization of the monoclonal antibodies for specific detection of the emerging H5N8 and H5Nx avian influenza virus hemagglutinins. Appl Microbiol Biotechnol 105, 235–245 (2021). https://doi.org/10.1007/s00253-020-11035-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-11035-7

Keywords

Navigation