Skip to main content

Advertisement

Log in

Bioprospecting microalgae from natural algal bloom for sustainable biomass and biodiesel production

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Natural algal bloom consists of promising algal species which could be a feasible option for the source of bulk biomass and biodiesel production. It has been found in five natural fresh water algal blooms (Uttar Pradesh, India), containing high nitrogen (N) (4.6 ± 0.32 mg/L) and phosphorus (P) (4.12 ± 0.29 mg/L) concentration during spring (23.9–25.9 °C) and summer season (32.0–35.0 °C). Among the isolated algae from naturally occurring bloom, Chlorella sorokiniana MKP01 exhibited highest biomass (1.02 ± 0.02 g/L) and lipid content (174.1 ± 9.6 mg/L) in untreated tap water and urea/single super phosphate (SSP) in the ratio (2:1). The biodiesel quality was assessed and found to be with the Indian and international standards. Algal bloom was artificially developed in the open pond containing 10,000 l tap water supplemented with Urea/SSP (2:1) for a consistent supply of bulk biomass, yielded 8 kg of total biomass and lipid 1.3 kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adey WH, Kangas PC, Mulbry W (2011) Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. Bioscience 61:434–441

    Article  Google Scholar 

  • Allen E, Browne J, Hynes S, Murphy JD (2013) The potential of algae blooms to produce renewable gaseous fuel. Waste Manag 33:2425–2433

    Article  CAS  PubMed  Google Scholar 

  • Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410

    Article  CAS  Google Scholar 

  • Amin NF, Khalafallah MA, Ali MA, Abou-Sdera SA, Matter IA (2013) Effect of some nitrogen sources on growth and lipid of microalgae Chlorella sp. for biodiesel production. JASR 9:4845–4855

    CAS  Google Scholar 

  • Arias-Peñarands MT, Cristiani-Urbina E, Montes-Horcasitas CM, Esparza-García F, Torzillo G, Cañizares-Villanueva RO (2013) A potential source of renewable lipid for high quality biodiesel production. Bioresour Technol 140:158–164

    Article  CAS  Google Scholar 

  • Beal CM, Smith CH, Webber ME, Ruoff RS, Hebner RE (2011) A framework to report the production of renewable diesel from algae. Bioenerg Res 4:36–60

    Article  Google Scholar 

  • Bohutskyi P, Liu K, Nasr LK, Byers N, Rosenberg JN, Oyler GA, Bouwer EJ (2015) Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl Microbiol Biotechnol 99:6139–6154

    Article  CAS  PubMed  Google Scholar 

  • Bohutskyi P, Chow S, Ketter B, Shek CF, Yacar D, Tang Y, Bouwer EJ (2016) Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production and nutrient recovery for secondary cultivation of lipid generating microalgae. Bioresour Technol 222:294–308

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Ge X, Park SY, Li Y (2013) Comparison of Synechocystis sp. PCC6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluent. Bioresour Technol 144:255–260

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Chalar G (2009) The use of phytoplankton patterns of diversity for algal bloom management. Limnologica 39:200–208

    Article  CAS  Google Scholar 

  • Chinnasamy S, Ramakrishnan B, Bhatnagar A, Das KC (2009) Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int J Mol Sci 10:518–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danesi EDG, Rangel-Yagui CO, Carvalho JCM, Sato S (2002) An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 23:261–269

    Article  CAS  Google Scholar 

  • Dasgupta CN, Suseela MR, Mandotra SK, Kumar P, Pandey MK, Toppo K, Lone JA (2015) Dual uses of microalgal biomass: an integrative approach for biohydrogen and biodiesel production. Appl Energy 46:202–208

    Article  CAS  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. New Delhi 686 pp: Indian Council of Agricultural Research

    Google Scholar 

  • Divakaran R, Pillai VS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422

    Article  CAS  Google Scholar 

  • EPA (1986) Quality criteria for water. Office of Water Regulations and Standards Division United States Environmental Protection Agency, Washington D.C. Report No. EPA-440/5 86-001

    Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Francisco EC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403

    Article  CAS  Google Scholar 

  • Giordano M, Norici A, Ratti S, Raven JA (2008) Role of sulfur for algae: acquisition, metabolism, ecology and evolution. In: Sulfur metabolism in phototrophic organisms. Springer, Netherlands, pp 397–415

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Halfhide T, Dalrymple OK, Wilkie AC, Trimmer J, Gillie B, Udom I, Ergas SJ (2015) Growth of an indigenous algal consortium on anaerobically digested municipal sludge centrate:photobioreactor performance and modeling. Bioenerg Res 8:249–258

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, vol. 41. pp 95–98

  • Jain P, Arora N, Mehtani J, Pruthi V, Majumder CB (2017) Pretreated algal bloom as a substantial nutrient source for microalgae cultivation for biodiesel production. Bioresour Technol 242:152–160

    Article  CAS  PubMed  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems Cambridge University Press

  • Knothe G (2012) Fuel properties of highly polyunsaturated fatty acid methyl esters, prediction of fuel properties of algal biodiesel. Energ Fuel 26:5265–5273

    Article  CAS  Google Scholar 

  • Kumar N, Banerjee C, Kumar N, Jagadevan S (2019) A novel non-starch based cationic polymer as flocculant for harvesting microalgae. Bioresour Technol 271:383–390

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT (2012) Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Appl Energy 94:303–308

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Thompson JD (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170

    Article  Google Scholar 

  • Madkour FF, Kamil AEW, Nasr HS (2012) Production and nutritive value of Spirulina platensis in reduced cost media. Egypt J Aquat Resc 38:51–57

    Article  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    Article  CAS  PubMed  Google Scholar 

  • Mandotra SK, Kumar P, Suseela MR, Ramteke PW (2014) Fresh water green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresour Technol 156:42–47

    Article  CAS  PubMed  Google Scholar 

  • Nagler PL, Glenn EP, Nelson SG, Napolean S (2003) Effects of fertilization treatment and stocking density on the growth and production of the economic seaweed Gracilaria parvispora (Rhodophyta) in cage culture at Molokai Hawaii. Aquaculture 219:379–391

    Article  Google Scholar 

  • Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745

    Article  CAS  PubMed  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  CAS  PubMed  Google Scholar 

  • Philipose MT (1967) Chlorococcales monograph on algae. New Delhi, India

  • Phukan MM, Chutia RS, Konwarm BK, Kataki R (2011) Microalgae Chlorella as a potential bio-energy feedstock. Appl Energy 1:3307–3312

    Article  CAS  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  CAS  PubMed  Google Scholar 

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514

    Article  CAS  Google Scholar 

  • Redfield AC (1960) The biological control of chemical factors in the environment. Sci Prog 11:150–170

    CAS  PubMed  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Sellner KG, Doucette GJ, Kirkpatrick G (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30:383–406

    Article  CAS  PubMed  Google Scholar 

  • Sharathchandra K, Rajashekhar M (2011) Total lipid and fatty acid composition in some freshwater cyanobacteria. J Algal Biomass Utln 2:83–97

    Google Scholar 

  • Shen QH, Jiang JW, Chen LP, Cheng LH, Xu XH, Chen HL (2015) Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production. Bioresour Technol 190:257–263

    Article  CAS  PubMed  Google Scholar 

  • Song H, Xu J, Lavoie M, Fan X, Liu G, Sun L, Qian H (2017) Biological and chemical factors driving the temporal distribution of cyanobacteria and heterotrophic bacteria in a eutrophic lake (West Lake, China). Appl Microbiol Biotechnol 101:1685–1696

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suroy M, Moriceau B, Boutorh J, Goutx M (2014) Fatty acids associated with the frustules of diatoms and their fate during degradation-a case study in Thalassiosira weissflogii. Oceanogr Res Pap 86:21–31

    Article  CAS  Google Scholar 

  • Tubea B, Hawxby K, Mehta R (1981) The effects of nutrient, pH and herbicide levels on algal growth. Hydrobiologia 79:221–227

    Article  CAS  Google Scholar 

  • Veillette M, Giroir-Fendler A, Faucheux N, Heitz M (2015) High-purity biodiesel production from microalgae and added-value lipid extraction: a new process. Appl Microbiol Biotechnol 99:109–119

    Article  CAS  PubMed  Google Scholar 

  • Vidyashankar S, Venugopal KS, Swarnalatha KGV, Chauhan MD, Ravi VS, Sarada R (2015) Characterization of fatty acids and hydrocarbons of chlorophycean microalgae towards their use as biofuel source. Biomass Bioenergy 77:75–91

    Article  CAS  Google Scholar 

  • Volker A. R. Huss, Carola Frank, Elke C. Hartmann, Monika Hirmer, Annette Kloboucek, Barbara M. Seidel, Petra Wenzeler, Erich Kessler, (1999) Biochemical Taxonomy and Molecular Phylogeny of the Genus Chlorella Sensu Lato (Chlorophyta). Journal of Phycology 35 (3):587-598

  • Wei L, Li X, Yi J, Yang Z, Wang Q, Ma W (2013) A simple approach for the efficient production of hydrogen from Taihu Lake Microcystis spp. blooms. Bioresour Technol 139:136–140

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm C, Jakob T (2011) From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol Biotechnol 92:909–919

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Tang J, Lian S, Tong D, Hu C (2015) Study on the conversion of cyanobacteria of Taihu Lake water blooms to biofuels. Biomass Bioenergy 73:95–101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-National Botanical Research Institute, Lucknow for the constant encouragement and necessary laboratory facilities. The authors acknowledge all lab members for their support.

Funding

The Department of Biotechnology (DBT), Delhi, India provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Ramteke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any experiments involving human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, M.K., Dasgupta, C.N., Mishra, S. et al. Bioprospecting microalgae from natural algal bloom for sustainable biomass and biodiesel production. Appl Microbiol Biotechnol 103, 5447–5458 (2019). https://doi.org/10.1007/s00253-019-09856-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09856-2

Keywords

Navigation