Skip to main content
Log in

Enhanced production and identification of antioxidants in in vitro cultures of the cacti Mammillaria candida and Turbinicarpus laui

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cacti are an important source of metabolites but present limitations for their commercial exploitation, like slow growth and a decrease of wild populations. An alternative to obtain their biocompounds without affecting the natural environment are the in vitro culture techniques. We established in vitro cultures from Mammillaria candida Scheidweiler and Turbinicarpus laui Glass and Foster and used different stresses to increase metabolites and antioxidant activity. The cultures were exposed to 1.25% polyethylene glycol to induce a moderate drought stress, 50 g L−1 sucrose to generate an osmotic stress, chitosan (1.25 to 5 mg mL−1) to simulate a biotic attack, or to UV light. Chitosan was the best elicitor improving 1.5 times the concentration of phenolics, 9 to 10 times the content of flavonoids and betalains, and 16% the antioxidant activity in M. candida suspensions. In T. laui suspensions, this elicitor duplicates the flavonoids content and antioxidant activity. The antioxidant levels in elicited suspensions increased 5 to 10 times in relation to plant tubercles. Eleven compounds were identified in M. candida suspensions being digalloyl rhamnoside and epicatequin gallate the most abundant; in the T. laui suspensions, 16 compounds were detected and the most abundant were 17-decarboxi neobetanin and derivatives of luteolin. Thus, cacti in vitro culture is an efficient system to obtain high level of metabolites of biological interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambigaipalan P, de Camargo AC, Shahidi F (2016) Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J Agr Food Chem 64:6584–6604. https://doi.org/10.1021/acs.jafc.6b02950

    Article  CAS  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal and Behav 6:1720–1731. https://doi.org/10.4161/psb.6.11.17613

    Article  CAS  Google Scholar 

  • Antognoni F, Zheng S, Pagnucco C, Baraldi R, Poli F, Biondi S (2007) Induction of flavonoid production by UV-B radiation in Passiflora quadrangularis callus cultures. Fitoterapia 78:345–352. https://doi.org/10.1016/j.fitote.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Antunes-Ricardo M, Moreno-García BE, Gutiérrez-Uribe JA, Aráiz-Hernández D, Alvarez MM, Serna-Saldivar SO (2014) Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads. Plant Foods Hum Nutr 69:331–336. https://doi.org/10.1007/s11130-014-0438-5

    Article  CAS  PubMed  Google Scholar 

  • Astello-García M, Cervantes I, Nair V, Santos-Díaz MS, Reyes-Agüero A, Guéraud F, Nègre-Salvayre A, Rossignol M, Cisneros-Zevallos L, Barba de la Rosa AP (2015) Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J Food Compost Anal 43:119–130. https://doi.org/10.1016/j.jfca.2015.04.016

    Article  CAS  Google Scholar 

  • Banskota AH, Tezuka Y, Kadota S (2001) Recent progress in pharmacological research of propolis. Phytother Res 15:561–571. https://doi.org/10.1002/ptr.1029

    Article  CAS  PubMed  Google Scholar 

  • Balen B, Tkalec M, Pavoković D, Pevalek-Kozlina B, Krsnik-Rasol M (2009) Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissues. J Plant Growth Regul 28:36–45. https://doi.org/10.1007/s00344-008-9072-5

    Article  CAS  Google Scholar 

  • Berger JM, Itagaki Y, Nakanishi K (2007) The effect of ultraviolet-depleted light on the flavonol contents of the cactus species Opuntia wilcoxii and Opuntia violacea. Chem Biodivers 4:1525–1532. https://doi.org/10.1002/cbdv.200790132

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellanos-Santiago E, Yahia EM (2008) Identification and quantification of betalains from the fruits of 10 mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J Agr Food Chem 56:5758–5764. https://doi.org/10.1021/jf800362t

    Article  CAS  Google Scholar 

  • Chappel J, Hahlbrock K (1984) Transcription of plant defence genes in response to UV light or fungal elicitor. Nature311:76–78. doi: https://doi.org/10.1038/311076a0

  • Chiu FL, Lin JK (2005) HPLC analysis of naturally occurring methylated catechins, 3‘ ‘- and 4‘ ‘-methyl-epigallocatechin gallate, in various fresh tea leaves and commercial teas and their potent inhibitory effects on inducible nitric oxide synthase in macrophages. J Agr Food Chem 53:7035–7042. https://doi.org/10.1021/jf0507442

    Article  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. PNAS 95:10328–10333. https://doi.org/10.1073/pnas.95.17.10328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esmaeelpanah E, Razavi BM, Vahdati Hasani F, Hosseinzadeh H (2017) Evaluation of epigallocatechin gallate and epicatechin gallate effects on acrylamide-induced neurotoxicity in rats and cytotoxicity in PC 12 cells. Drug Chem Toxicol 26:1–8. https://doi.org/10.1080/01480545.2017.1381108

    Article  CAS  Google Scholar 

  • Federspiel M, Fischer R, Hennig M, Mair MJ, Oberhauser T, Rimmler G, Albiez T, Bruhin J, Estermann H, Gandert C, Göckel V, Götzö S, Hoffmann U, Huber G, Janatsch G, Lauper S, Röckel-Stäbler O, Trussardi R, Zwahlen A (1999) Industrial synthesis of the key precursor in the synthesis of the anti-influenza drug oseltamivir phosphate (ro 64-0796/002, gs-4104-02): ethyl (3R,4S,5S)-4,5-epoxy-3-(1-ethyl-propoxy)-cyclohex-1-ene-1-carboxylate. OPR&D 3:266–274. https://doi.org/10.1021/op9900176

    Article  CAS  Google Scholar 

  • Ferrari S (2010) Biological elicitors of plant secondary metabolites: mode of action and use in the production of nutraceuticals. In: Giardi MT, Rea G, Berra B (ed.) Bio-farms for nutraceuticals, Springer-Landes Bioscience, pp 152–166

  • Ferri M, Tassoni A (2011) Chitosan as elicitor of health beneficial secondary metabolites in in vitro plant cell cultures. In: Mackay RG, Tait JM (eds) Handbook of chitosan research and applications. Nova Science Publishers Inc, New York, pp 389–414

    Google Scholar 

  • Georgiev V, Ilieva M, Bley T, Pavlov A (2008) Betalain production in plant in vitro systems. Acta Physiol Planta 30:581–593. https://doi.org/10.1007/s11738-008-0170-6

    Article  CAS  Google Scholar 

  • González-Cabrera LD (2014) Efecto de reguladores del crecimiento exógenos sobre el desarrollo y la producción de metabolitos secundarios en cultivos de raíces transformadas de cactáceas. Dissertation University of Aguascalientes, México

  • Hollósy F (2000) Effect of UV radiation on plant cells. Micron 33:179–197. https://doi.org/10.1016/S0968-4328(01)00011-7

    Article  Google Scholar 

  • Inostroza-Blancheteau C, Reyes-Díaz M, Arellano A, Latsague M, Acevedo P, Loyola R, Arce-Johnson P, Alberdi M (2014) Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves. Plant Physiol Biochem 85:85–95. https://doi.org/10.1016/j.plaphy.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Harsha PS, Giridhar P, Ravishankar GA (2012) Pigment identification, nutritional composition, bioactivity, and in vitro cancer cell cytotoxicity of Rivina humilis L. berries, potential source of betalains. LWT-Food Sci Technol 47:315–323. https://doi.org/10.1016/j.lwt.2012.01.025

    Article  CAS  Google Scholar 

  • Lutty JM (2001) The cacti of CITES Appendix I. CITES Management Authority of Switzerland, Bern

  • Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG (2005) Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey as well as their radical scavenging activity. Food Chem 91:571–577. https://doi.org/10.1016/j.foodchem.2004.10.006

    Article  CAS  Google Scholar 

  • Mikołajczyk-Bator K, Czapski J (2017) Effect of pH changes on antioxidant capacity and the content of betalain pigments during the heating of a solution of red beet betalains. Pol J Food Nutr Sci 67:123–128. https://doi.org/10.1515/pjfns-2016-0012

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Lu Y, Foo Y (2001) Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem 75:197–202. https://doi.org/10.1016/S0308-8146(01)00198-4

    Article  CAS  Google Scholar 

  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4:1457–1465. https://doi.org/10.1021/bm034130m

    Article  CAS  Google Scholar 

  • Robles-Martínez M, Barba-de la Rosa AP, Guéraud F, Negre-Salvayre A, Rossignol M, Santos-Díaz MS (2016) Establishment of callus and cell suspensions of wild and domesticated Opuntia species: study on their potential as a source of metabolite production. Plant Cell Tissue Organ Cult 124:181–189. https://doi.org/10.1007/s11240-015-0886-0

    Article  CAS  Google Scholar 

  • Santos-Díaz MS, Pérez-Molphe-Balch E, Ramírez-Malagón R, Núñez-Palenius HG, Ochoa-Alejo N (2010) Mexican threatened cacti: current status and strategies for their conservation. In: Tepper GH (ed), Species diversity and extinction, Hauppauge, NY:Nova Science Publishers, pp 1–60

  • Santos-Díaz MS, Velásquez-García Y, González-Chávez MM (2005) Pigment production by callus of Mammillaria candida Scheidweiler (Cactaceae). Agrociencia 39:619–626

    Google Scholar 

  • Santos-Zea L, Gutierrez-Uribe JA, Serna-Saldivar SO (2011) Comparative analyses of total phenols, antioxidant activity, and flavonol glycoside profile of cladode flours from different varieties of Opuntia spp. Agric Food Chem 59:7054–7061. https://doi.org/10.1021/jf200944y

    Article  CAS  Google Scholar 

  • Sotomayor JM, Arredondo-Gómez A, Sánchez-Barra FR, Méndez-Martínez M (2004) The genus Turbinicarpus in San Luis Potosí. Venogno, Italy: Cactus & Co

  • Ŝtarha R, Chybidziurova A, Lacný Z (1999) Alkaloids of the genus Turbinicarpus (Cactaceae). Biochem Syst Ecol 27:839–841

    Article  Google Scholar 

  • Tan HP, Wong DZH, Ling SK, Chuah CH, Kadir HA (2012) Neuroprotective activity of galloylated cyanogenic glucosides and hydrolysable tannins isolated from leaves of Phyllagathis rotundifolia. Fitoterapia 83:223–229. https://doi.org/10.1016/j.fitote.2011.10.019

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse AL (2002) Determination of total phenolics. In: Current protocols in food analytical chemistry, New York: John Wiley & Sons, Inc, pp 1–8

  • Wybraniec S, Novak-Wydra B (2007) Mammillarinin: a new malonylated betacyanin from fruits of Mammillaria. J Agr Food Chem 55:8138–8143. https://doi.org/10.1021/jf071095s

    Article  CAS  Google Scholar 

  • Zaragoza-Martínez F, Lucho-Constantino GG, Ponce-Noyola T, Esparza-García F, Poggi-Varaldo H, Cerda-García C, Trejo-Tapia G, Ramos-Valdivia A (2016) Jasmonic acid stimulates the oxidative responses and triterpene production in Jatropha curcas cell suspension cultures through mevalonate as biosynthetic precursor. Plant Cell Tiss Organ Cult 127:47–56. https://doi.org/10.1007/s11240-016-1028-z

    Article  CAS  Google Scholar 

  • Zhao XM, She XP, Yu W, Liang XM, Du YG (2007) Effects of oligochitosans on tobacco cells and role of endogenous nitric oxide burst in resistance of tobacco to tobacco mosaic virus. J Plant Pathol 89:55–65

    CAS  Google Scholar 

Download references

Funding

We are grateful to CONACYT for the scholarship to ARM (no. 401860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Socorro Santos-Díaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Martínez, A., Antunes-Ricardo, M., Gutiérrez-Uribe, J. et al. Enhanced production and identification of antioxidants in in vitro cultures of the cacti Mammillaria candida and Turbinicarpus laui. Appl Microbiol Biotechnol 103, 2583–2595 (2019). https://doi.org/10.1007/s00253-019-09656-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09656-8

Keywords

Navigation