Skip to main content
Log in

Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An algal sorbent derived from Sargassum horneri was prepared and used to adsorb cesium and strontium ions from aqueous solution. The phenomenological mathematical models associated to the predicted equilibrium isotherms were developed to determine the rate-limiting steps of the adsorption process. The maximum adsorption capacity of cesium ion and strontium ion was calculated to be 0.358 and 1.72 mmol g−1, respectively. The adsorption kinetics followed to the pseudo-second-order equation. It was found that adsorption of cesium or strontium ions onto the active sites of the biosorbent was the rate-limiting step. In addition, the external mass transfer and the internal mass transfer cannot be neglected for the adsorption of strontium ion based on the error analysis. The functional groups relevant to the adsorption were carboxyl and sulfate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah MA, Chiang L, Nadeem M (2009) Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents. Chem Eng J 146:370–376

    Article  CAS  Google Scholar 

  • Alluri H, Ronda S, Settalluri V, Bondili J, Suryanarayana V, Venkateshwar P (2007) Biosorption: an eco-friendly alternative for heavy metal removal. Afr J Biotechnol 6:2924–2931

    Article  CAS  Google Scholar 

  • Anand M, Suresh S (2015) Marine seaweed Sargassum wightii extract as a low-cost sensitizer for ZnO photoanode based dye-sensitized solar cell. Adv Nat Sci Nanosci Nanotechnol 6:035008

    Article  CAS  Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  • Blanco SPDM, Scheufele FB, Módenes AN, Espinoza-Quiñones FR, Marin P, Kroumov AD, Borba CE (2017) Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chem Eng J 307:466–475

    Article  CAS  Google Scholar 

  • Brady JM, Tobin JM (1995) Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme Microb Technol 17:791–796

    Article  CAS  Google Scholar 

  • Caldwell ADS, Bye PGT, Briggs MH (1967) Strontium, calcium and magnesium in brown algae. Nature 215:1167

    Article  Google Scholar 

  • Chale-Dzul J, Moo-Puc R, Robledo D, Freile-Pelegrín Y (2014) Hepatoprotective effect of the fucoidan from the brown seaweed Turbinaria tricostata. J Appl Phycol 27:2123–2135

    Article  CAS  Google Scholar 

  • Chen YW, Wang JL (2012) Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des 242:445–451

    Article  CAS  Google Scholar 

  • Chen YW, Wang JL (2016) Removal of cesium from radioactive wastewater using magnetic chitosan beads cross-linked with glutaraldehyde. Nucl Sci Tech 27:43. https://doi.org/10.1007/s41365-016-0033-6

    Article  Google Scholar 

  • Chen JP, Yang L (2006) Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis. Langmuir 22:8906–8914

    Article  CAS  PubMed  Google Scholar 

  • Chi T, Zuo JE, Liu FL (2017) Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar. Front Environ Sci Eng 11:15. https://doi.org/10.1007/s11783-017-0921-y

    Article  CAS  Google Scholar 

  • Cruz P, Magalhães FD, Mendes A (2006) Generalized linear driving force approximation for adsorption of multicomponent mixtures. Chem Eng Sci 61:3519–3531

    Article  CAS  Google Scholar 

  • Dotto GL, Pinto LAA (2012) Analysis of mass transfer kinetics in the biosorption of synthetic dyes onto Spirulina platensis nanoparticles. Biochem Eng J 68:85–90

    Article  CAS  Google Scholar 

  • Elovich SY, Larinov OG (1962) Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izv Akad Nauk Sssr Otdelenie Khim Nauk 2:209–216

    Google Scholar 

  • Figueira MM, Volesky B, Mathieu HJ (1999) Instrumental analysis study of iron species biosorption by Sargassum biomass. Environ Sci Technol 33:1840–1846

    Article  CAS  Google Scholar 

  • Fourest E, Volesky B (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30:277–282

    Article  CAS  Google Scholar 

  • Freundlich H (1907) Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie 57U:(1)385–470

  • Ho YS, McKay G (1998a) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76:332–340

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (1998b) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hurvich CM (1991) Bias of the corrected AIC criterion for underfitted regression and time series models. Biometrika 78:499–509

    Google Scholar 

  • Jia F, Wang JL (2017) Separation of cesium ions from aqueous solution by vacuum membrane distillation process. Prog Nucl Energy 98:293–300

    Article  CAS  Google Scholar 

  • Jia F, Li J, Wang JL, Sun YL (2017a) Removal of cesium from simulated radioactive wastewater using a novel disc tubular reverse osmosis system. Nucl Technol 197:219–224

    Article  Google Scholar 

  • Jia F, Li JF, Wang JL, Sun YL (2017b) Removal of strontium ions from simulated radioactive wastewater by vacuum membrane distillation. Ann Nucl Energy 103:363–368

    Article  CAS  Google Scholar 

  • Kumar KV, Sivanesan S (2005) Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon. J Hazard Mater 123:288–292

    Article  CAS  PubMed  Google Scholar 

  • Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar 24(4):1–39

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

  • Leyva-Ramos R, Ocampo-Perez R, Mendoza-Barron J (2012) External mass transfer and hindered diffusion of organic compounds in the adsorption on activated carbon cloth. Chem Eng J 183:141–151

    Article  CAS  Google Scholar 

  • Lin J, Wang L (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng 3:320–324

    Article  CAS  Google Scholar 

  • Lin Q, Xu X, Wang LH, Chen Q, Fang J, Shen XD, Lou LP, Tian GM (2017) The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature. Front Environ Sci Eng 11. https://doi.org/10.1007/s11783-017-0924-8

  • Liu XJ, Wu JL, Wang JL (2018) Removal of Cs(I) from simulated radioactive wastewater by three forward osmosis membranes. Chem Eng J 344:353–362

    Article  CAS  Google Scholar 

  • Marin P, Borba CE, Modenes AN, Espinoza-Quinones FR, de Oliveira SP, Kroumov AD (2014) Determination of the mass transfer limiting step of dye adsorption onto commercial adsorbent by using mathematical models. Environ Technol 35:2356–2364

    Article  CAS  PubMed  Google Scholar 

  • Marks L, Salinas-Ruiz P, Reed D, Holbrook S, Culver C, Engle J, Kushner D, Caselle J, Freiwald J, Williams J, Smith J, Aguilar-Rosas L, Kaplanis N (2015) Range expansion of a non-native, invasive macroalga Sargassum horneri (Turner) C. Agardh, 1820 in the eastern Pacific. BioInvasions Records 4:243–248

    Article  Google Scholar 

  • Nuhoglu Y, Malkoc E, Gürses A, Canpolat N (2002) The removal of Cu (II) from aqueous solutions by Ulothrix zonata. Bioresour Technol 85:331–333

    Article  CAS  PubMed  Google Scholar 

  • Ocampo-Perez R, Leyva-Ramos R, Mendoza-Barron J, Guerrero-Coronado RM (2011) Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models. J Colloid Interface Sci 364:195–204

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Lee YC, Shin WS, Choi SJ (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem Eng J 162:685–695

    Article  CAS  Google Scholar 

  • Piccin JS, Dotto GL, Vieira MLG, Pinto LAA (2011) Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan. J Chem Eng Data 56:3759–3765

    Article  CAS  Google Scholar 

  • Rahman ROA, Ibrahim HA, Hanafy M, Monem NMA (2010) Assessment of synthetic zeolite Na A–X as sorbing barrier for strontium in a radioactive disposal facility. Chem Eng J 157:100–112

    Article  CAS  Google Scholar 

  • Raize O, Argaman Y, Yannai S (2004) Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnol Bioeng 87:451–458

    Article  CAS  PubMed  Google Scholar 

  • Rogers H, Bowers J, Gates-Anderson D (2012) An isotope dilution-precipitation process for removing radioactive cesium from wastewater. J Hazard Mater 243:124–129

    Article  CAS  PubMed  Google Scholar 

  • Scheufele FB, Módenes AN, Borba CE, Ribeiro C, Espinoza-Quiñones FR, Bergamasco R, Pereira NC (2016) Monolayer–multilayer adsorption phenomenological model: kinetics, equilibrium and thermodynamics. Chem Eng J 284:1328–1341

    Article  CAS  Google Scholar 

  • Southichak B, Nakano K, Nomura M, Chiba N, Nishimura O (2008) Marine macroalga Sargassum horneri as biosorbent for heavy metal removal: roles of calcium in ion exchange mechanism. Water Sci Technol 58:697–704

    Article  CAS  PubMed  Google Scholar 

  • Suzaki PYR, Munaro MT, Triques CC, Kleinübing SJ, Klen MRF, de Matos Jorge LM, Bergamasco R (2017) Biosorption of binary heavy metal systems: phenomenological mathematical modeling. Chem Eng J 313:364–373

    Article  CAS  Google Scholar 

  • Tan KL, Hameed BH (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25–48

    Article  CAS  Google Scholar 

  • Umpleby RJ, Baxter SC, Chen Y, Shah RN, Shimizu KD (2001) Characterization of molecularly imprinted polymers with the Langmuir−Freundlich isotherm. Anal Chem 73(19):4584–4591

  • US EPA (2016) Current and emerging post-Fukushima technologies, and techniques, and practices for wide area radiological survey, remediation, and waste management. U.S. Environmental Protection Agency, Washington, DC EPA/600/R-16/140

    Google Scholar 

  • Vafajoo L, Cheraghi R, Dabbagh R, McKay G (2018) Removal of cobalt (II) ions from aqueous solutions utilizing the pre-treated 2-Hypnea Valentiae algae: equilibrium, thermodynamic, and dynamic studies. Chem Eng J 331:39–47

    Article  CAS  Google Scholar 

  • Wang JL, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Zhuang ST (2017) Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Crit Rev Environ Sci Technol 47:2331–2386

    Article  CAS  Google Scholar 

  • Wang JL, Zhuang ST, Liu Y (2018a) Metal hexacyanoferrates-based adsorbents for cesium removal. Coord Chem Rev 374:430–438

    Article  CAS  Google Scholar 

  • Wang X, Shan T, Pang S (2018b) Phytoremediation potential of Saccharina japonica and Sargassum horneri (Phaeophyceae): biosorption study of strontium. Bull Environ Contam Toxicol 101:501–505

    Article  CAS  PubMed  Google Scholar 

  • Yang CH (1998) Statistical mechanical study on the Freundlich isotherm equation. J Colloid Interface Sci 208:379–387

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Nan C, Cai J (2017) Bioadsorption characteristic of Cr(VI) from aqueous solution by nonliving Sargassum horneri. Environ Pollut Cont 39:159–164

    Google Scholar 

  • Yin YN, Hu J, Wang JL (2017a) Removal of Sr2+, Co2+ and Cs+ from aqueous solution by immobilized Saccharomyces cerevisiae with magnetic chitosan beads. Environ Prog Sustain Energy 36:989–996

    Article  CAS  Google Scholar 

  • Yin YN, Wang JL, Yang XY, Li WH (2017b) Removal of strontium ions by immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres. Nucl Eng Technol 49:172–177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Key Research and Development Program (2016YFC1402507) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13026). The authors would like to thank Dr. T. F. Shan (Institute of Oceanology, Chinese Academy of Sciences) for kindly providing the dry seaweed materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Wang.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 416 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Guo, X., Chen, C. et al. Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer. Appl Microbiol Biotechnol 103, 2833–2843 (2019). https://doi.org/10.1007/s00253-019-09619-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09619-z

Keywords

Navigation