Skip to main content
Log in

From radioactive ligands to biosensors: binding methods with olfactory proteins

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, we critically review the binding protocols currently reported in the literature to measure the affinity of odorants and pheromones to soluble olfactory proteins, such as odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and Niemann-Pick class C2 (NPC2) proteins. The first part contains a brief introduction on the principles of binding and a comparison of the techniques adopted or proposed so far, discussing advantages and problems of each technique, as well as their suitable application to soluble olfactory proteins. In the second part, we focus on the fluorescent binding assay, currently the most widely used approach. We analyse advantages and drawbacks, trying to identify the causes of anomalous behaviours that have been occasionally observed, and suggest how to interpret the experimental data when such events occur. In the last part, we describe the state of the art of biosensors for odorants, using soluble olfactory proteins immobilised on biochips, and discuss the possibility of using such approach as an alternative way to measure binding events and dissociation constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander RW, Williams LT, Lefkowitz RJ (1975) Identification of cardiac beta-adrenergic receptors by (minus) [3H]alprenolol binding. Proc Natl Acad Sci U S A 72:1564–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P (1999) Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 262:745–754

    Article  CAS  PubMed  Google Scholar 

  • Baaske MD, Foreman MR, Vollmer F (2014) Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat Nanotechnol 9:933–939

    Article  CAS  PubMed  Google Scholar 

  • Bahadır EB, Sezgintürk MK (2015) Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal Biochem 478:107–120

    Article  PubMed  CAS  Google Scholar 

  • Ban LP, Zhang L, Yan YH, Pelosi P (2002) Binding properties of a locust’s chemosensory protein. Biochem Biophys Res Commun 293:50–54

    Article  CAS  PubMed  Google Scholar 

  • Ban LP, Scaloni A, D’Ambrosio C, Zhang L, Yan YH, Pelosi P (2003) Biochemical characterisation and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell Mol Life Sci 60:390–400

    Article  CAS  PubMed  Google Scholar 

  • Bartoschik T, Galinec S, Kleusch C, Walkiewicz K, Breitsprecher D, Weigert S, Muller YA, You C, Piehler J, Vercruysse T, Daelemans D, Tschammer N (2018) Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by MicroScale thermophoresis. Sci Rep 8:4977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett JP Jr, Snyder SH (1975) Stereospecific binding of d-lysergic acid diethylamide (LSD) to brain membranes: relationship to serotonin receptors. Brain Res 94:523–544

    Article  CAS  PubMed  Google Scholar 

  • Bergström G, Mandenius C-F (2011) Orientation and capturing of antibody affinity ligands: applications to surface plasmon resonance biochips. Sensors and Actuators B Chem 158:265–270

    Article  CAS  Google Scholar 

  • Beynon RJ, Veggerby C, Payne CE, Robertson DH, Gaskell SJ, Humphries RE, Hurst JL (2002) Polymorphism in major urinary proteins: molecular heterogeneity in a wild mouse population. J Chem Ecol 28:1429–1446

    Article  CAS  PubMed  Google Scholar 

  • Bianchet MA, Bains G, Pelosi P, Pevsner J, Snyder SH, Monaco HL, Amzel LM (1996) The three dimensional structure of bovine odorant-binding protein and its mechanism of odor recognition. Nat Struct Biol 3:934–939

    Article  CAS  PubMed  Google Scholar 

  • Bignetti E, Cavaggioni A, Pelosi P, Persaud KC, Sorbi RT, Tirindelli R (1985) Purification and characterization of an odorant binding protein from cow nasal tissue. Eur J Biochem 149:227–231

    Article  CAS  PubMed  Google Scholar 

  • Briand L, Nespoulous C, Perez V, Rémy JJ, Huet JC, Pernollet JC (2000a) Ligand-binding properties and structural characterization of a novel rat odorant-binding protein variant. Eur J Biochem 267:3079–3089

    Article  CAS  PubMed  Google Scholar 

  • Briand L, Huet J, Perez V, Lenoir G, Nespoulous C, Boucher Y, Trotier D, Pernollet JC (2000b) Odorant and pheromone binding by aphrodisin, a hamster aphrodisiac protein. FEBS Lett 476:179–185

    Article  CAS  PubMed  Google Scholar 

  • Briand L, Nespoulous C, Huet JC, Takahashi M, Pernollet JC (2001) Ligand binding and physico-chemical properties of ASP2, a recombinant odorant-binding protein from honeybee (Apis mellifera L.). Eur J Biochem 268:752–760

    Article  CAS  PubMed  Google Scholar 

  • Briand L, Nespoulous C, Huet JC, Takahashi M, Pernollet JC (2002a) Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. Eur J Biochem 269:4586–4596

    Article  CAS  PubMed  Google Scholar 

  • Briand L, Eloit C, Nespoulous C, Bezirard V, Huet JC, Henry C, Blon F, Trotier D, Pernollet JC (2002b) Evidence of an odorant-binding protein in the human olfactory mucus: location, structural characterization, and odorant-binding properties. Biochemistry 41:7241–7252

    Article  CAS  PubMed  Google Scholar 

  • Broza YY, Vishinkin R, Barash O, Nakhleh MK, Haick H (2018) Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem Soc Rev 47:4781–4859

    Article  CAS  PubMed  Google Scholar 

  • Bruns RF, Lawson-Wendling K, Pugsley TA (1983) A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem 132:74–81

    Article  CAS  PubMed  Google Scholar 

  • Burova TV, Choiset Y, Jankowski CK, Haertlé T (1999) Conformational stability and binding properties of porcine odorant binding protein. Biochemistry 38:15043–15051

    Article  CAS  PubMed  Google Scholar 

  • Campanacci V, Krieger J, Bette S, Sturgis JN, Lartigue A, Cambillau C, Breer H, Tegoni M (2001) Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J Biol Chem 276:20078–20084

    Article  CAS  PubMed  Google Scholar 

  • Campanacci V, Lartigue A, Hallberg BM, Jones TA, Giudici-Orticoni MT, Tegoni M, Cambillau C (2003) Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proc Natl Acad Sci U S A 29:5069–5074

    Article  CAS  Google Scholar 

  • Cavaggioni A, Findlay JB, Tirindelli R (1990) Ligand binding characteristics of homologous rat and mouse urinary proteins and pyrazine-binding protein of calf. Comp Biochem Physiol B 96:513–520

    Article  CAS  PubMed  Google Scholar 

  • Dal Monte M, Centini M, Anselmi C, Pelosi P (1993) Binding of selected odorants to bovine and porcine odorant-binding proteins. Chem Senses 18:713–721

    Article  CAS  Google Scholar 

  • Damberger F, Nikonova L, Horst R, Peng G, Leal WS, Wuthrich K (2000) NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci 9:1038–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Pietrantonio F, Cannatà D, Benetti M, Verona E, Varriale A, Staiano M, D'Auria S (2013) Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins. Biosens Bioelectron 41:328–334

    Article  PubMed  CAS  Google Scholar 

  • D'Innocenzo B, Salzano AM, D'Ambrosio C, Gazzano A, Niccolini A, Sorce C, Dani FR, Scaloni A, Pelosi P (2006) Secretory proteins as potential semiochemical carriers in the horse. Biochemistry 45:13418–13428

    Article  CAS  PubMed  Google Scholar 

  • Dohlman HG, Caron MG, Lefkowitz RJ (1987) Structure and function of the beta 2-adrenergic receptor-homology with rhodopsin. Kidney Int Suppl 23:S2–S13

    CAS  PubMed  Google Scholar 

  • Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103:19678–19682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fayad S, Morin P, Nehmé R (2017) Use of chromatographic and electrophoretic tools for assaying elastase, collagenase, hyaluronidase, and tyrosinase activity. J Chromatogr A 1529:1–28

    Article  CAS  PubMed  Google Scholar 

  • Ferrari E, Lodi T, Sorbi RT, Tirindelli R, Cavaggioni A, Spisni A (1997) Expression of a lipocalin in Pichia pastoris: secretion, purification and binding activity of a recombinant mouse major urinary protein. FEBS Lett 401:73–77

    Article  CAS  PubMed  Google Scholar 

  • Finberg JPM, Schwartz M, Jeries R, Badarny S, Nakhleh MK, Abu Daoud E, Ayubkhanov Y, Aboud-Hawa M, Broza YY, Haick H (2018) Sensor Array for detection of early stage Parkinson's disease before medication. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.8b00245

  • Fisher E, Zhao Y, Richardson R, Janik M, Buell AK, Aigbirhio FI, Tóth G (2017) Detection and characterization of small molecule interactions with fibrillar protein aggregates using microscale thermophoresis. ACS Chem Neurosci 8(9):2088–2095

    Article  CAS  PubMed  Google Scholar 

  • Flower DR, North AC, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Or S, Toop A, Wheeldon I (2017) DNA nanostructure sequence-dependent binding of organophosphates. Langmuir 33:2033–2040

    Article  CAS  PubMed  Google Scholar 

  • Gardner J, Bartlett PN, eds. (2013) Sensors and sensory systems for an electronic nose. Springer Science & Business Media

  • Gardner JW, Persaud KC, eds. (2001) Electronic noses and olfaction 2000. Proceedings of the 7th International Symposium On Olfaction And Electronic Noses, Brighton, UK

  • Gisbert Quilis N, Lequeux M, Venugopalan P, Khan I, Knoll W, Boujday S, Lamy de la Chapelle M, Dostalek J (2018) Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS. Nanoscale 10:10268–10276

    Article  CAS  PubMed  Google Scholar 

  • Hérent MF, Collin S, Pelosi P (1995) Affinities of nutty and green-smelling compounds to odorant-binding proteins. Chem Senses 20:601–610

    Article  PubMed  Google Scholar 

  • Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  PubMed  Google Scholar 

  • Hoß SG, Bendas G (2017) Mass-sensitive biosensor systems to determine the membrane interaction of Analytes. Methods Mol Biol 1520:145–157

    Article  PubMed  CAS  Google Scholar 

  • Hotel O, Poli JP, Mer-Calfati C, Scorsone E, Saada S (2017) SAW Sensor’s frequency shift characterization for odor recognition and concentration estimation. IEEE Sensors J 17:7011–7018

    Article  Google Scholar 

  • Hulme EC, Birdsall NJM (1992) Strategy and tactics in receptor-binding studies. In: Hulme EC (ed) Receptor–ligand interactions—a practical approach. IRL Press, Oxford, pp 63–176

    Google Scholar 

  • Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161:1219–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iovinella I, Dani FR, Niccolini A, Sagona S, Michelucci E, Gazzano A, Turillazzi S, Felicioli A, Pelosi P (2011) Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age. J Proteome Res 10:3439–3449

    Article  CAS  PubMed  Google Scholar 

  • Iovinella I, Ban L, Song L, Pelosi P, Dani FR (2016) Proteomic analysis of castor bean tick Ixodes ricinus: a focus on chemosensory organs. Insect Biochem Mol Biol 78:58–68

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Tsuchiya W, Fujii T, Fujimoto Z, Miyazawa M, Ishibashi J, Matsuyama S, Ishikawa Y, Yamazaki T (2014) Niemann-pick type C2 protein mediating chemical communication in the worker ant. Proc Natl Acad Sci U S A 111:3847–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen EV, DeSombre ER (1973) Estrogen-receptor interaction. Science 182:126–134

    Article  CAS  PubMed  Google Scholar 

  • Johnsson B, Löfås S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277

    Article  CAS  PubMed  Google Scholar 

  • Kastritis PL, Bonvin AM (2012) On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 10:20120835

    Article  PubMed  CAS  Google Scholar 

  • Kobilka B, Gether U, Seifert R, Lin S, Ghanouni P (1998) Examination of ligand-induced conformational changes in the beta2 adrenergic receptor. Life Sci 62:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Kotlowski C, Larisika M, Guerin PM, Kleber C, Kröber T, Mastrogiacomo R, Nowak C, Schutz S, Schwaighofer A, Knoll W (2018) Fine discrimination of volatile compounds by graphene-immobilized odorant-binding proteins. Sensors Actuators B Chem 256:564–572

    Article  CAS  Google Scholar 

  • Krilaviciute A, Heiss JA, Leja M, Kupcinskas J, Haick H, Brenner H (2015) Detection of cancer through exhaled breath: a systematic review. Oncotarget 6:38643–38657

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahiri J, Isaacs L, Tien J, Whitesides GM (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal Chem 71:777–790

    Article  CAS  PubMed  Google Scholar 

  • Lang X, Gao Y, Wheeldon I (2018) Quantifying small molecule binding interactions with DNA nanostructures. Methods Mol Biol 1814:145–155

    Article  PubMed  Google Scholar 

  • Larisika M, Kotlowski C, Steininger C, Mastrogiacomo R, Pelosi P, Schütz S, Peteu SF, Kleber C, Reiner-Rozman C, Nowak C, Knoll W (2015) Electronic olfactory sensor based on A. mellifera odorant-binding protein 14 on a reduced graphene oxide field-effect transistor. Angew Chem Int Ed Engl 54:13245–13248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C (2002) X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem 277:32094–32098

    Article  CAS  PubMed  Google Scholar 

  • Lartigue A, Gruez A, Spinelli S, Riviere S, Brossut R, Tegoni M, Cambillau C (2003) The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J Biol Chem 278(32):30213–30218

    Article  CAS  PubMed  Google Scholar 

  • Leal GM, Leal WS (2015) Binding of a fluorescence reporter and a ligand to an odorant-binding protein of the yellow fever mosquito, Aedes aegypti. F1000Res 3:305

    PubMed Central  Google Scholar 

  • Leal WS, Chen AM, Erickson ML (2005a) Selective and pH-dependent binding of a moth pheromone to a pheromone-binding protein. J Chem Ecol 31:2493–2499

    Article  CAS  PubMed  Google Scholar 

  • Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005b) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A 102:5386–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Saha P, Li J, Blobel G, Pfeffer SR (2016) Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proc Natl Acad Sci U S A 113:10079–10084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin KH, Lu WJ, Wang SH, Fong TH, Chou DS, Chang CC, Chang NC, Chiang YC, Huang SY, Sheu JR (2014) Characteristics of endogenous γ-amino-butyric acid (GABA) in human platelets: functional studies of a novel collagen glycoprotein VI inhibitor. J Mol Med 92:603–614

    Article  CAS  PubMed  Google Scholar 

  • Liu J (2005) Systematic studies of protein immobilization by surface plasmon field-enhanced fluorescence spectroscopy, PhD Thesis, University of Mainz, Germany

  • Liu Q, Wang H, Li H, Zhang J, Zhuang S, Zhang F, Hsia KJ, Wang P (2013) Impedance sensing and molecular modeling of an olfactory biosensor based on chemosensory proteins of honeybee. Biosens Bioelectron 40:174–179

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Zhao XF, Fu L, Han YY, Chen J, Lu YY (2017) BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel). Sci Rep 7:15894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Löbel D, Marchese S, Krieger J, Pelosi P, Breer H (1998) Subtypes of odorant-binding proteins--heterologous expression and ligand binding. Eur J Biochem 254(318):324

    Google Scholar 

  • Löbel D, Strotmann J, Jacob M, Breer H (2001) Identification of a third rat odorant-binding protein (OBP3). Chem Senses 26:673–680

    Article  PubMed  Google Scholar 

  • Lu Y, Li H, Zhuang S, Zhang D, Zhang Q, Zhou J, Dong S, Liu Q, Wang P (2014) Olfactory biosensor using odorant-binding proteins from honeybee: ligands of floral odors and pheromones detection by electrochemical impedance. Sensors Actuators B Chem 193:420–427

    Article  CAS  Google Scholar 

  • Lu Y, Yao Y, Zhang Q, Zhang D, Zhuang S, Li H, Liu Q (2015) Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens Bioelectron 67:662–669

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhang D, Zhang Q, Huang Y, Luo S, Yao Y, Li S, Liu Q (2016) Impedance spectroscopy analysis of human odorant binding proteins immobilized on nanopore arrays for biochemical detection. Biosens Bioelectron 79:251–257

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Yang L, He L (2018) Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction. J Pharm Anal 8:147–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Maibeche–Coisne M, Sobrio F, Delavnay T, Lettere M, Dubroca J, Jacquin–Joly E, Nagnam–Le Meillour P (1997) Pheromone binding proteins of the moth Mamestra brassicae: specificity of ligand binding. Insect Biochem Mol Biol 27:213–221

    Article  Google Scholar 

  • Maida R, Ziegelberger G, Kaissling KE (2003) Ligand binding to six recombinant pheromone-binding proteins of Antheraea polyphemus and Antheraea pernyi. J Comp Physiol B 173:565–573

    Article  CAS  PubMed  Google Scholar 

  • Manai R, Scorsone E, Rousseau L, Ghassemi F, Possas Abreu M, Lissorgues G, Tremillon N, Ginisty H, Arnault JC, Tuccori E, Bernabei M, Cali K, Persaud KC, Bergonzo P (2014) Grafting odorant binding proteins on diamond bio-MEMS. Biosens Bioelectron 60:311–317

    Article  CAS  PubMed  Google Scholar 

  • Marchese S, Pes D, Scaloni A, Carbone V, Pelosi P (1998) Lipocalins of boar salivary glands binding odours and pheromones. Eur J Biochem 252:563–568

    Article  CAS  PubMed  Google Scholar 

  • Marie AD, Veggerby C, Robertson DHL, Gaskell SJ, Hubbard SJ, Martinsen L, Hurst JL, Beynon RJ (2001) Effect of polymorphisms on ligand binding by mouse major urinary proteins. Protein Sci 10:411–417

    Article  CAS  Google Scholar 

  • Mastrogiacomo R, D’Ambrosio C, Niccolini A, Serra A, Gazzano A, Scaloni A, Pelosi P (2014a) An odorant-binding protein is abundantly expressed in the nose and in the seminal fluid of the rabbit. PLoS One 9:e111932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mastrogiacomo R, Iovinella I, Napolitano E (2014b) New fluorescent probes for ligand-binding assays of odorant-binding proteins. Biochem Biophys Res Commun 446:137–142

    Article  CAS  PubMed  Google Scholar 

  • McAfee A, Chapman A, Iovinella I, Gallagher-Kurtzke Y, Collins TF, Higo H, Madilao LL, Pelosi P, Foster LJ (2018) A death pheromone, oleic acid, triggers hygienic behavior in honey bees (Apis mellifera L.). Sci Rep 8:5719

    Article  PubMed  PubMed Central  Google Scholar 

  • Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374

    Article  CAS  PubMed  Google Scholar 

  • Mueller AM, Breitsprecher D, Duhr S, Baaske P, Schubert T, Längst G (2017) Microscale Thermophoresis: a rapid and precise method to quantify protein-nucleic acid interactions in solution. Methods Mol Biol 1654:151–164

    Article  PubMed  Google Scholar 

  • Mulla MY, Tuccori E, Magliulo M, Lattanzi G, Palazzo G, Persaud K, Torsi L (2015) Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat Commun 6:6010

    Article  CAS  PubMed  Google Scholar 

  • Nagnan-Le Meillour P, Huet JC, Maibeche M, Pernollet JC, Descoins C (1996) Purification and characterization of multiple forms of odorant/pheromone binding proteins in the antennae of Mamestra brassicae (Noctuidae). Insect Biochem Mol Biol 26:59–67

    Article  CAS  PubMed  Google Scholar 

  • Nagnan-Le Meillour P, Cain AH, Jacquin-Joly E, François MC, Ramachandran S, Maida R, Steinbrecht RA (2000) Chemosensory proteins from the proboscis of Mamestra brassicae. Chem Senses 25:541–553

    Article  CAS  PubMed  Google Scholar 

  • Ning Y, Gao Q, Zhang X, Wei K, Chen L (2016) A graphene oxide-based sensing platform for the determination of methicillin-resistant Staphylococcus aureus based on strand-displacement polymerization recycling and synchronous fluorescent signal amplification. J Biomol Screen 21:851–857

    Article  CAS  PubMed  Google Scholar 

  • O'Shannessy DJ, Winzor DJ (1996) Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology. Anal Biochem 236:275–283

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Zhou H (2017) Rate constants and mechanisms of protein-ligand binding. Annu Rev Biophys 46:105–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paolini S, Tanfani F, Fini C, Bertoli E, Pelosi P (1999) Porcine odorant-binding protein: structural stability and ligand affinities measured by fourier-transform infrared spectroscopy and fluorescence spectroscopy. Biochim Biophys Acta 1431:179–188

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29:199–228

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Tirindelli R (1989) Structure/activity studies and characterization of an odorant-binding protein. In: Brand JG, Teeter JH, Cagan RH, Kare MR (eds) Chemical senses. Vol. 1. Receptor events and transduction in taste and olfaction. Marcel Dekker, Inc., New York, pp 207–226

    Google Scholar 

  • Pelosi P, Pisanelli AM, Baldaccini NE, Gagliardo A (1981) Binding of [3H]-2-isobutyl-3-methoxypyrazine to cow olfactory mucosa. Chem Senses 6:77–85

    Article  CAS  Google Scholar 

  • Pelosi P, Baldaccini NE, Pisanelli AM (1982) Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J 201:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelosi P, Zhou J-J, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Iovinella I, Felicioli A, Dani FR (2014a) Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelosi P, Mastrogiacomo R, Iovinella I, Tuccori E, Persaud KC (2014b) Structure and biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 98:61–70

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR (2018) Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev Camb Philos Soc 93:184–200

    Article  PubMed  Google Scholar 

  • Persaud KC, Marco S, Gutierrez-Galvez A (eds) (2013) Neuromorphic olfaction (frontiers in neuroengineering series). CRC Press, Boca Raton

    Google Scholar 

  • Pert CB, Pasternak G, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361

    Article  CAS  PubMed  Google Scholar 

  • Pevsner J, Trifiletti RR, Strittmatter SM, Snyder SH (1985) Isolation and characterization of an olfactory receptor protein for odorant pyrazines. Proc Natl Acad Sci U S A 82:3050–3054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pevsner J, Trifiletti RR, Strittmatter SM, Snyder SH (1990) Odorant-binding protein. Characterization of ligand binding J Biol Chem 265:6118–6125

    CAS  PubMed  Google Scholar 

  • Piliarik M, Vaisocherová H, Homola J (2009) Surface plasmon resonance biosensing. Methods Mol Biol 503:65–88

    Article  CAS  PubMed  Google Scholar 

  • Qiao H, He X, Schymura D, Ban L, Field L, Dani FR, Michelucci E, Caputo B, della Torre A, Iatrou K, Zhou JJ, Krieger J, Pelosi P (2011) Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell Mol Life Sci 68:1799–1813

    Article  CAS  PubMed  Google Scholar 

  • Reiner-Rozman C, Kotlowski C, Knoll W (2016) Electronic Biosensing with functionalized rGO FETs. Biosensors (Basel) 6:17

    Article  CAS  Google Scholar 

  • Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151

    Article  CAS  PubMed  Google Scholar 

  • Seidel SA, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, Joseph JS, Srinivasan P, Baaske P, Simeonov A, Katritch I, Melo FA, Ladbury JE, Schreiber G, Watts A, Braun D, Duhr S (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59:301–315

    Article  CAS  PubMed  Google Scholar 

  • Simantov R, Snyder SH (1977) The opiate receptor. Biochem Soc Trans 5:62–65

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH (1979) Receptors, neurotransmitters and drug responses. N Engl J Med 300:465–472

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH (2004) Opiate receptors and beyond: 30 years of neural signaling research. Neuropharmacology 47(Suppl 1):274–285

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH, Childers SR (1979) Opiate receptors and opioid peptides. Annu Rev Neurosci 2:35–64

    Article  CAS  PubMed  Google Scholar 

  • Spinelli S, Lagarde A, Iovinella I, Legrand P, Tegoni M, Pelosi P, Cambillau C (2012) Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem Mol Biol 42:41–50

    Article  CAS  PubMed  Google Scholar 

  • Stites WE, Byrne MP, Aviv J, Kaplan M, Curtis PM (1995) Instrumentation for automated determination of protein stability. Anal Biochem 227:112–122

    Article  CAS  PubMed  Google Scholar 

  • Stoddart LA, White CW, Nguyen K, Hill SJ, Pfleger KD (2016) Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br J Pharmacol 173:3028–3037

    Article  CAS  PubMed  Google Scholar 

  • Sun YF, De Biasio F, Qiao HL, Iovinella I, Yang SX, Ling Y, Riviello L, Battaglia D, Falabella P, Yang XL, Pelosi P (2013) Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (E)-ß-farnesene and structural analogues. PLoS One 7:e32759

    Article  CAS  Google Scholar 

  • Szunerits S, Boukherroub R (2018) Graphene-based biosensors. Interface Focus 8:20160132

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Kishi K, Hiraga R, Hayashi K, Mamada Y, Oshige M, Katsura S (2018) A new method for immobilization of his-tagged proteins with the application of low-frequency AC electric field. Sensors (Basel) 18:E784

    Article  Google Scholar 

  • Tcatchoff L, Nespoulous C, Pernollet JC, Briand L (2006) A single lysyl residue defines the binding specificity of a human odorant-binding protein for aldehydes. FEBS Lett 580:2102–2108

    Article  CAS  PubMed  Google Scholar 

  • Tegoni M, Ramoni R, Bignetti E, Spinelli S, Cambillau C (1996) Domain swapping creates a third putative combining site in bovine odorant binding protein dimer. Nat Struct Biol 3:863–867

    Article  CAS  PubMed  Google Scholar 

  • Tegoni M, Pelosi P, Vincent F, Spinelli S, Campanacci V, Grolli S, Ramoni R, Cambillau C (2000) Mammalian odorant binding proteins. Biochim Biophys Acta 1482:229–240

    Article  CAS  PubMed  Google Scholar 

  • Tegoni M, Campanacci V, Cambillau C (2004) Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29:257–264

    Article  CAS  PubMed  Google Scholar 

  • Tisch U, Haick H (2010) Arrays of chemisensitive monolayer-capped metallic nanoparticles for diagnostic breath testing. Rev Chem Eng 26:171–179

    Article  CAS  Google Scholar 

  • Topazzini A, Pelosi P, Pasqualetto PL, Baldaccini NE (1985) Specificity of a pyrazine binding protein from cow olfactory mucosa. Chem Senses 10:45–49

    Article  CAS  Google Scholar 

  • Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  PubMed  Google Scholar 

  • Vareiro MM, Liu J, Knoll W, Zak K, Williams D, Jenkins AT (2005) Surface plasmon fluorescence measurements of human chorionic gonadotrophin: role of antibody orientation in obtaining enhanced sensitivity and limit of detection. Anal Chem 77:2426–2431

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Huang CJ, Jonas U, Wei T, Dostalek J, Knoll W (2009) Biosensor based on hydrogel optical waveguide spectroscopy. Biosens Bioelectron 25:1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Guan L, Zhong T, Li K, Yin J, Cao Y (2013) Potential cooperations between odorant-binding proteins of the scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae). PLoS One 8:e84795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Dong Y, Liang X (2018) Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples. Biosens Bioelectron 109:1–7

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Brandazza A, Pelosi P (2008) Binding of Polyclycic aromatic hydrocarbons to mutants of odorant-binding protein: a first step towards biosensors for environmental monitoring. Biochim Biophys Acta 1784:666–671

    Article  CAS  PubMed  Google Scholar 

  • Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Zheng G, Yu F, Kuennemann E, Textor M, Knoll W (2005) Combined affinity and catalaytic biosensor: in-situ enzymatic activity monitoring of surface bound enzymes. J Am Chem Soc 127:13084–13085

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Xu X, Leal WS, Ames JB (2011) Extrusion of the C-terminal helix in navel orangeworm moth pheromone-binding protein (AtraPBP1) controls pheromone binding. Biochem Biophys Res Commun 404:335–338

    Article  CAS  PubMed  Google Scholar 

  • Yoon JW, Lee JH (2017) Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives. Lab Chip 17:3537–3557

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Chen L-Z, Gu S-H, Cui J-J, Gao X-W, Zhang Y-J, Guo Y-Y (2011) Binding characterization of recombinant odorant-binding proteins from the parasitic wasp, Microplitis mediator (Hymenoptera: Braconidae). J Chem Ecol 37:189–194

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Wang SN, Peng Y, Lu ZY, Shan S, Yang YQ, Li RJ, Zhang YJ, Guo YY (2017) Functional characterization of a Niemann-pick type C2 protein in the wasp Microplitis mediator. Insect Sci. https://doi.org/10.1111/1744-7917.12473

    Article  PubMed  Google Scholar 

  • Zhou J-J, Zhang G-A, Huang W, Birkett MA, Field LM, Pickett JA, Pelosi P (2004) Revisiting odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination. FEBS Lett 558:23–26

    Article  CAS  PubMed  Google Scholar 

  • Zhou J-J, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol 389:529–545

    Article  CAS  PubMed  Google Scholar 

  • Zhou XH, Ban LP, Iovinella I, Zhao LJ, Gao Q, Felicioli A, Sagona S, Pieraccini G, Pelosi P, Zhang L, Dani FR (2013) Diversity, abundance, and sex-specific expression of chemosensory proteins in the reproductive organs of the locust Locusta migratoria manilensis. Biol Chem 394:43–54

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Ban L, Song LM, Liu Y, Pelosi P, Wang G (2016) General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food. Insect Biochem Mol Biol 72:10–19

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Arena S, Spinelli S, Liu D, Zhang G, Wei R, Cambillau C, Scaloni A, Wang G, Pelosi P (2017) Reverse chemical ecology: olfactory proteins from the giant panda and their interactions with putative pheromones and bamboo volatiles. Proc Natl Acad Sci U S A 114:E9802–E9810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Guo M, Ban L, Song LM, Liu Y, Pelosi P, Wang G (2018) Niemann-pick C2 proteins: a new function for an old family. Front Physiol 9:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegelberger G (1995) Redox shift of the pheromone-binding protein in the silkmoth Antheraea polyphemus. Eur J Biochem 232:706–711

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pelosi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelosi, P., Zhu, J. & Knoll, W. From radioactive ligands to biosensors: binding methods with olfactory proteins. Appl Microbiol Biotechnol 102, 8213–8227 (2018). https://doi.org/10.1007/s00253-018-9253-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9253-5

Keywords

Navigation