Skip to main content
Log in

Improving the acetic acid tolerance and fermentation of Acetobacter pasteurianus by nucleotide excision repair protein UvrA

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acetic acid bacteria (AAB) are widely used in acetic acid fermentation due to their remarkable ability to oxidize ethanol and high tolerance against acetic acid. In Acetobacter pasteurianus, nucleotide excision repair protein UvrA was up-regulated 2.1 times by acetic acid when compared with that without acetic acid. To study the effects of UvrA on A. pasteurianus acetic acid tolerance, uvrA knockout strain AC2005-ΔuvrA, uvrA overexpression strain AC2005 (pMV24-uvrA), and the control strain AC2005 (pMV24), were constructed. One percent initial acetic acid was almost lethal to AC2005-ΔuvrA. However, the biomass of the UvrA overexpression strain was higher than that of the control under acetic acid concentrations. After 6% acetic acid shock for 20 and 40 min, the survival ratios of AC2005 (pMV24-uvrA) were 2 and 0.12%, respectively; however, they were 1.5 and 0.06% for the control strain AC2005 (pMV24). UvrA overexpression enhanced the acetification rate by 21.7% when compared with the control. The enzymes involved in ethanol oxidation and acetic acid tolerance were up-regulated during acetic acid fermentation due to the overexpression of UvrA. Therefore, in A. pasteurianus, UvrA could be induced by acetic acid and is related with the acetic acid tolerance by protecting the genome against acetic acid to ensure the protein expression and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to acknowledge the Mizkan Group Corporation, Japan, for their plasmid pMV24 and Dr. Wei Liujing (East China University of Science and Technology, China) for gifting the plasmids pSUP202 and pRK2013.

Funding

This work was supported by the National Natural Science Foundation of China (31201406, 31671851), Tianjin Municipal Science and Technology Commission (16YFZCNC00650, 17PTGCCX00190), Rural Affairs Committee of Tianjin (201701180), Program for Changjiang Scholars and the Innovative University Research Team (IRT15R49), and the Innovative Research Team of Tianjin Municipal Education Commission (TD13-5013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Wang, J., Bai, X. et al. Improving the acetic acid tolerance and fermentation of Acetobacter pasteurianus by nucleotide excision repair protein UvrA. Appl Microbiol Biotechnol 102, 6493–6502 (2018). https://doi.org/10.1007/s00253-018-9066-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9066-6

Keywords

Navigation