Skip to main content

Advertisement

Log in

Optimization of the Gal4/UAS transgenic tools in zebrafish

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Gal4/UAS system provides a powerful tool to analyze the function of genes. The system has been employed extensively in zebrafish; however, cytotoxicity of Gal4 and methylation of UAS can hinder future applications of Gal4/UAS in zebrafish. In this study, we provide quantitative data on the cytotoxicity of Gal4-FF and KalTA4 in zebrafish embryos. A better balance between induction efficiency and toxicity was shown when the injection dosage was 20 pg for Gal4-FF and 30 pg for KalTA4. We tested the DNA methylation of UAS in different copies (3×, 5×, 7×, 9×, 11×, and 14×), and the results showed, for the first time, that the degree of UAS methylation increases with the increase in the copy number of UAS. We detected insertions of the Tol2-mediated transgene in the Gal4 line and found as many as three sites of insertion, on average; only about 20% of individuals contained single-site insertion in F1 generation. We suggested that the screening of Gal4 lines with single-site insertion is essential when Tol2-mediated Gal4 transgenic lines are created. Moreover, we designed a novel 5 × non-repetitive UAS (5 × nrUAS) to reduce the appeal of multicopy UAS as a target for methylation. Excitingly, the 5 × nrUAS is less prone to methylation compared to 5 × UAS. We hope the results will facilitate the future application of the Gal4/UAS system in zebrafish research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akitake CM, Macurak M, Halpern ME, Goll MG (2011) Transgenerational analysis of transcriptional silencing in zebrafish. Dev Biol 352(2):191–201

    Article  CAS  Google Scholar 

  • Asakawa K, Kawakami K (2009) The tol2-mediated gal4-uas method for gene and enhancer trapping in zebrafish. Methods 49(3):275–281

    Article  CAS  Google Scholar 

  • Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by tol2 transposon mediated gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U S A 105(4):1255–1260

    Article  CAS  Google Scholar 

  • Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient crispr/cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1):142–153

    Article  CAS  Google Scholar 

  • Baier H, Scott EK (2009) Genetic and optical targeting of neural circuits and behavior--zebrafish in the spotlight. Curr Opin Neurobiol 19(5):553–560

    Article  CAS  Google Scholar 

  • Banerjee S, Mino E, Fisher ES, Bhat MA (2017) A versatile genetic tool to study midline glia function in the drosophila cns. Dev Biol 429:35–43. https://doi.org/10.1016/j.ydbbio.2017.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bougioukli S, Sugiyama O, Alluri R, Ortega B, Lieberman J (2017) Comparison of two lentiviral two-step transcriptional amplification systems using gal4ff or gal4vp16 transactivators for ex vivo regional gene therapy in bone repair. Mol Ther 25(5):214

    Google Scholar 

  • Carey M, Kakidani H, Leatherwood J, Mostashari F, Ptashne M (1989) An amino-terminal fragment of gal4 binds dna as a dimer. J Mol Biol 209(3):423–432

    Article  CAS  Google Scholar 

  • Daba A, Koromilas AE, Pantopoulos K (2012) Alternative ferritin mrna translation via internal initiation. RNA 18(3):547–556

    Article  CAS  Google Scholar 

  • Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC (2003) Efficient gene delivery and gene expression in zebrafish using the sleeping beauty transposon. Dev Biol 263(2):191–202

    Article  CAS  Google Scholar 

  • Davison JM, Akitake CM, Goll MG, Rhee JM, Gosse N, Baier H, Halpern ME, Leach SD, Parsons MJ (2007) Transactivation from gal4-vp16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304(2):811–824

    Article  CAS  Google Scholar 

  • Distel M, Wullimann MF, Köster RW (2009) Optimized gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci U S A 106(32):13365–13370

    Article  CAS  Google Scholar 

  • Dorer DR (1997) Do transgene arrays form heterochromatin in vertebrates? Transgenic Res 6(1):3–10

    Article  CAS  Google Scholar 

  • Ehrlich M (2003) Expression of various genes is controlled by dna methylation during mammalian development. J Cell Biochem 88(5):899–910

    Article  CAS  Google Scholar 

  • Garrick D, Fiering S, Martin DIK, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18(1):56–59

    Article  CAS  Google Scholar 

  • Giniger E, Varnum SM, Ptashne M (1985) Specific dna binding of gal4, a positive regulatory protein of yeast. Cell 40(4):767–774

    Article  CAS  Google Scholar 

  • Goll MG, Anderson R, Stainier DYR, Spradling AC, Halpern ME (2009) Transcriptional silencing and reactivation in transgenic zebrafish. Genetics 182(3):747–755

    Article  CAS  Google Scholar 

  • Guan B, Hu W, Zhang TL, Wang YP, Zhu ZY (2008) Metabolism traits of ‘all-fish’ growth hormone transgenic common carp (Cyprinus carpio l.). Aquaculture 284(1–4):217–223

    Article  CAS  Google Scholar 

  • Halpern ME, Rhee J, Goll MG, Akitake CM, Parsons M, Leach SD (2008) Gal4/uas transgenic tools and their application to zebrafish. Zebrafish 5(2):97–110

    Article  CAS  Google Scholar 

  • Hartley KO, Nutt SL, Amaya E (2002) Targeted gene expression in transgenic xenopus using the binary gal4-uas system. Proc Natl Acad Sci U S A 99(3):1377–1382

    Article  CAS  Google Scholar 

  • Inbal A, Topczewski J, Solnicakrezel L (2006) Targeted gene expression in the zebrafish prechordal plate. Genesis 44(12):584–588

    Article  CAS  Google Scholar 

  • Kang T, Martins T, Sadowski I (1993) Wild type gal4 binds cooperatively to the gal1-10 UASG in vitro. J Biol Chem 268(13):9629–9635

    CAS  PubMed  Google Scholar 

  • Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina AM (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7(1):133–144

    Article  CAS  Google Scholar 

  • Kedde M, Strasser MJ, Boldajipour B, Oude JV, Slanchev K, Sage CI, Nagel R, Voorhoeve PM, Duijse JV, øRom UA, Lund AH, Perrakis A, Raz E, Agami R (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286

    Article  CAS  Google Scholar 

  • Köster RW, Fraser SE (2001) Tracing transgene expression in living zebrafish embryos. Dev Biol 233(2):329–346

    Article  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3(9):662–673

    Article  CAS  Google Scholar 

  • Li FY, Papworth M, Minczuk M, Rohde C, Zhang YY, Ragozin S, Jeltsch A (2007) Chimeric dna methyltransferases target dna methylation to specific dna sequences and repress expression of target genes. Nucleic Acids Res 35(1):100–112

    Article  Google Scholar 

  • Nagayoshi S, Hayashi E, Abe G, Osato N, Asakawa K, Urasaki A, Horikawa K, lkeo K, Takeda H, Kawakami K (2008) Insertional mutagenesis by the tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135(1):159–169

    Article  CAS  Google Scholar 

  • Ogura E, Okuda Y, Kondoh H, Kamachi Y (2010) Adaptation of gal4 activators for enhancer trapping in zebrafish. Dev Dyn 238(3):641–655

    Article  Google Scholar 

  • Ovchinnikov DA, van Zuylen WJ, Debats CE, Alexander KA, Kellie S, Hume DA (2008) Expression of gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using csf1r-gal4vp16/uas-ecfp double-transgenic mice. J Leukoc Biol 83(2):430–433

    Article  CAS  Google Scholar 

  • Pang SC, Wang HP, Zhu ZY, Sun YH (2015) Transcriptional activity and dna methylation dynamics of the gal4/uas system in zebrafish. Mar Biotechnol 17(5):593–603

    Article  CAS  Google Scholar 

  • Sadowski I, Ma J, Triezenberg S, Ptashne M (1988) Gal4-vp16 is an unusually potent transcriptional activator. Nature 335(6190):563–564

    Article  CAS  Google Scholar 

  • Sato T, Hamaoka T, Aizawa H, Hosoya T, Okamoto H (2007) Genetic single-cell mosaic analysis implicates ephrinb2 reverse signaling in projections from the posterior tectum to the hindbrain in zebrafish. J Neurosci 27(20):5271–5279

    Article  CAS  Google Scholar 

  • Scheer N, Camposortega JA (1999) Use of the gal4-uas technique for targeted gene expression in the zebrafish. Mech Dev 80(2):153–158

    Article  CAS  Google Scholar 

  • Thresher R, Van dKJ, Campbell G, Grewe P, Canning M, Barney M, Bax NJ, Dunham R, Su B, Fulton W (2014) Sex-ratio-biasing constructs for the control of invasive lower vertebrates. Nat Biotechnol 32:424–427

    Article  CAS  Google Scholar 

  • Tsubota T, Uchino K, Kamimura M, Ishikawa M, Hamamoto H, Sekimizu K, Sezutsu H (2014) Establishment of transgenic silkworms expressing gal4 specifically in the haemocyte oenocytoid cells. Insect Mol Biol 23(2):165–174

    Article  CAS  Google Scholar 

  • Webster N, Jin JR, Green S, Hollis M, Chambon P (1988) The yeast uasg is a transcriptional enhancer in human hela cells in the presence of the gal4 trans-activator. Cell 52(2):169–178

    Article  CAS  Google Scholar 

  • Xiong F, Wei ZQ, Zhu ZY, Sun YH (2013) Targeted expression in zebrafish primordial germ cells by cre/loxp and gal4/uas systems. Mar Biotechnol 15(5):526–539

    Article  CAS  Google Scholar 

  • Zhang YS, Chen J, Cui XJ, Luo DJ, Xia H, Dai J, Zhu ZY, Hu W (2015) A controllable on-off strategy for the reproductive containment of fish. Sci Rep-UK 5(5):73–78

    Google Scholar 

  • Zhong CR, Song YL, Wang YP, Li YM, Liao LJ, Xie SG, Zhu ZY (2012) Growth hormone transgene effects on growth performance are inconsistent among offspring derived from different homozygous transgenic common carp ( cyprinus carpio, l.). Aquaculture s356–357(4):404–441

    Article  Google Scholar 

Download references

Funding

This research is funded by the Hunan Natural Science Foundation of China (2018JJ3371), the National Foundation of Natural Science of China (31572619), Science Foundation of Hunan university of Arts and Science (16BSQD47), and also by the development funds of Chinese central government to guide local science and technology (No.2017CT5013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunsheng Zhang.

Ethics declarations

This article does not involve human participants. All zebrafish experiments were conducted in accordance with the Guiding Principles for the Care and Use of Laboratory Animals and were approved by Hunan University of Arts and Science.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ouyang, J., Qie, J. et al. Optimization of the Gal4/UAS transgenic tools in zebrafish. Appl Microbiol Biotechnol 103, 1789–1799 (2019). https://doi.org/10.1007/s00253-018-09591-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-09591-0

Keywords

Navigation