Skip to main content
Log in

Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The industrial organism Corynebacterium glutamicum is often subjected to acid stress during large-scale fermentation for the production of bio-based chemicals. The capacity of the cells to thrive in acidic environments is a prerequisite for achieving high product yields. In this study, we obtained an acid-adapted strain using an adaptive laboratory evolution strategy. Physiological characterizations revealed that the adapted strain achieved improved cell viability after acid-stress challenge, with a higher cytoplasmic pHin level, a lower intracellular reactive oxygen species (ROS), and an enhanced morphological integrity of the cells, when compared to those of the original control strain. Transcriptome analysis indicated that several important cellular processes were altered in the adapted strain, including sulfur metabolism, iron transport, and central metabolic pathways. Further research displayed that KatA and Dps cooperatively mediated intracellular ROS scavenging, which was required for resistance to low-pH stress in C. glutamicum. Furthermore, the repression of sulfur assimilation by the McbR regulator also contributed to the improvement of acid-stress tolerance. Moreover, two copper chaperone genes cg1328 and cg3292 were found to be involved in promoting cell survival under acid-stress conditions. Finally, a new recombinant C. glutamicum strain with enhanced acid tolerance was generated by the combined overexpression of katA, dps, mcbR, and cg1328, showing 18.4 ± 2.5% higher biomass yields than the wild-type strain under acid-stress conditions. These findings will provide new insights into the understanding and genetic improvement of acid tolerance in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

We are grateful to Prof. Masayuki Inui (Research Institute of Innovative Technology for the Earth, Japan) for generously providing plasmids.

Funding

This study was supported by the National Natural Science Foundation of China (No. 31500044), the Natural Science Foundation of Tianjin (No. 17JCQNJC09600, No. 17JCYBJC24000), the Tianjin Science and Technology Project (15PTCYSY00020), the Foundation of Hebei Educational Committee (ZD2017047) and the “Hundred Talents Program” of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Lv, H., Wei, L. et al. Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum. Appl Microbiol Biotechnol 103, 1877–1891 (2019). https://doi.org/10.1007/s00253-018-09585-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-09585-y

Keywords

Navigation